亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, pruning has emerged as a popular technique to reduce the computational complexity and memory footprint of Convolutional Neural Network (CNN) models. Mutual Information (MI) has been widely used as a criterion for identifying unimportant filters to prune. However, existing methods for MI computation suffer from high computational cost and sensitivity to noise, leading to suboptimal pruning performance. We propose a novel method to improve MI computation for CNN pruning, using the spatial aura entropy. The spatial aura entropy is useful for evaluating the heterogeneity in the distribution of the neural activations over a neighborhood, providing information about local features. Our method effectively improves the MI computation for CNN pruning, leading to more robust and efficient pruning. Experimental results on the CIFAR-10 benchmark dataset demonstrate the superiority of our approach in terms of pruning performance and computational efficiency.

相關內容

This paper introduces a novel ridgelet transform-based method for Poisson image denoising. Our work focuses on harnessing the Poisson noise's unique non-additive and signal-dependent properties, distinguishing it from Gaussian noise. The core of our approach is a new thresholding scheme informed by theoretical insights into the ridgelet coefficients of Poisson-distributed images and adaptive thresholding guided by Stein's method. We verify our theoretical model through numerical experiments and demonstrate the potential of ridgelet thresholding across assorted scenarios. Our findings represent a significant step in enhancing the understanding of Poisson noise and offer an effective denoising method for images corrupted with it.

Metaphors are considered to pose challenges for a wide spectrum of NLP tasks. This gives rise to the area of computational metaphor processing. However, it remains unclear what types of metaphors challenge current state-of-the-art models. In this paper, we test various NLP models on the VUA metaphor dataset and quantify to what extent metaphors affect models' performance on various downstream tasks. Analysis reveals that VUA includes a large number of metaphors that pose little difficulty to downstream tasks. We would like to shift the attention of researchers away from these metaphors to instead focus on challenging metaphors. To identify hard metaphors, we propose an automatic pipeline that identifies metaphors that challenge a particular model. Our analysis demonstrates that our detected hard metaphors contrast significantly with VUA and reduce the accuracy of machine translation by 16\%, QA performance by 4\%, NLI by 7\%, and metaphor identification recall by over 14\% for various popular NLP systems.

Coded distributed computing (CDC), proposed by Li et al., offers significant potential for reducing the communication load in MapReduce computing systems. In the setting of the cascaded CDC that consisting of $K$ nodes, $N$ input files, and $Q$ output functions, the objective is to compute each output function through $s\geq 1$ nodes with a computation load $r\geq 1$, enabling the application of coding techniques during the Shuffle phase to achieve minimum communication load. However, a significant limitation in most existing cascaded CDC schemes is their demand for splitting the original data into an exponentially growing number of input files and requiring an exponentially large number of output functions, which imposes stringent requirements for implementation. In this paper, we focus on the cascaded case of $K/s\in\mathbb{N}$, deliberately designing the strategy of data placement and output functions assignment based on a grouping method, such that a low-complexity Shuffle strategy is achievable. The main advantages of the proposed scheme include: 1) the multicast gains equal to $(r+s-1)(1-1/s)$ and $r+s-1$ which is approximate to $r+s-1$ when $s$ is relatively large, and the communication load is quite approximate to or surprisingly better than the optimal state-of-the-art scheme proposed by Li et al.; 2) the proposed scheme requires significantly less number of input files and output functions; 3) all the operations are implemented over the minimum binary field $\mathbb{F}_2$ in the one-shot fashion. Finally, we derive a new converse bound for the cascaded CDC framework, under the given strategies of data placement and output functions assignment. We demonstrate that the communication load of the proposed scheme is order optimal within a factor of $2$; and is also approximately optimal when $K$ is sufficiently large for a given $r$.

Neural Implicit Representation (NIR) has recently gained significant attention due to its remarkable ability to encode complex and high-dimensional data into representation space and easily reconstruct it through a trainable mapping function. However, NIR methods assume a one-to-one mapping between the target data and representation models regardless of data relevancy or similarity. This results in poor generalization over multiple complex data and limits their efficiency and scalability. Motivated by continual learning, this work investigates how to accumulate and transfer neural implicit representations for multiple complex video data over sequential encoding sessions. To overcome the limitation of NIR, we propose a novel method, Progressive Fourier Neural Representation (PFNR), that aims to find an adaptive and compact sub-module in Fourier space to encode videos in each training session. This sparsified neural encoding allows the neural network to hold free weights, enabling an improved adaptation for future videos. In addition, when learning a representation for a new video, PFNR transfers the representation of previous videos with frozen weights. This design allows the model to continuously accumulate high-quality neural representations for multiple videos while ensuring lossless decoding that perfectly preserves the learned representations for previous videos. We validate our PFNR method on the UVG8/17 and DAVIS50 video sequence benchmarks and achieve impressive performance gains over strong continual learning baselines. The PFNR code is available at //github.com/ihaeyong/PFNR.git.

Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works.

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司