亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a kind of fully actuated system, omnidirectional multirotor aerial vehicles (OMAVs) has more flexible maneuverability than traditional underactuated multirotor aircraft, and it also has more significant advantages in obstacle avoidance flight in complex environments.However, there is almost no way to generate the full degrees of freedom trajectory that can play the OMAVs' potential.Due to the high dimensionality of configuration space, it is challenging to make the designed trajectory generation algorithm efficient and scalable.This paper aims to achieve obstacle avoidance planning of OMAV in complex environments. A 6-DoF trajectory generation framework for OMAVs was designed for the first time based on the geometrically constrained Minimum Control Effort (MINCO) trajectory generation framework.According to the safe regions represented by a series of convex polyhedra, combined with the aircraft's overall shape and dynamic constraints, the framework finally generates a collision-free optimal 6-DoF trajectory.The vehicle's attitude is parameterized into a 3D vector by stereographic projection.Simulation experiments based on Gazebo and PX4 Autopilot are conducted to verify the performance of the proposed framework.

相關內容

Estimating the expectations of functionals applied to sums of random variables (RVs) is a well-known problem encountered in many challenging applications. Generally, closed-form expressions of these quantities are out of reach. A naive Monte Carlo simulation is an alternative approach. However, this method requires numerous samples for rare event problems. Therefore, it is paramount to use variance reduction techniques to develop fast and efficient estimation methods. In this work, we use importance sampling (IS), known for its efficiency in requiring fewer computations to achieve the same accuracy requirements. We propose a state-dependent IS scheme based on a stochastic optimal control formulation, where the control is dependent on state and time. We aim to calculate rare event quantities that could be written as an expectation of a functional of the sums of independent RVs. The proposed algorithm is generic and can be applied without restrictions on the univariate distributions of RVs or the functional applied to the sum. We apply this approach to the log-normal distribution to compute the left tail and cumulative distribution of the ratio of independent RVs. For each case, we numerically demonstrate that the proposed state-dependent IS algorithm compares favorably to most well-known estimators dealing with similar problems.

An intuitive control method for the flying trot, which combines offline trajectory planning with real-time balance control, is presented. The motion features of running animals in the vertical direction were analysed using the spring-load-inverted-pendulum (SLIP) model, and the foot trajectory of the robot was planned, so the robot could run similar to an animal capable of vertical flight, according to the given height and speed of the trunk. To improve the robustness of running, a posture control method based on a foot acceleration adjustment is proposed. A novel kinematic based CoM observation method and CoM regulation method is present to enhance the stability of locomotion. To reduce the impact force when the robot interacts with the environment, the virtual model control method is used in the control of the foot trajectory to achieve active compliance. By selecting the proper parameters for the virtual model, the oscillation motion of the virtual model and the planning motion of the support foot are synchronized to avoid the large disturbance caused by the oscillation motion of the virtual model in relation to the robot motion. The simulation and experiment using the quadruped robot Billy are reported. In the experiment, the maximum speed of the robot could reach 4.73 times the body length per second, which verified the feasibility of the control method.

Understanding causal relationships is one of the most important goals of modern science. So far, the causal inference literature has focused almost exclusively on outcomes coming from the Euclidean space $\mathbb{R}^p$. However, it is increasingly common that complex datasets are best summarized as data points in non-linear spaces. In this paper, we present a novel framework of causal effects for outcomes from the Wasserstein space of cumulative distribution functions, which in contrast to the Euclidean space, is non-linear. We develop doubly robust estimators and associated asymptotic theory for these causal effects. As an illustration, we use our framework to quantify the causal effect of marriage on physical activity patterns using wearable device data collected through the National Health and Nutrition Examination Survey.

We present a hierarchical framework based on graph search and model predictive control (MPC) for electric autonomous vehicle (EAV) parking maneuvers in a tight environment. At high-level, only static obstacles are considered, and the scenario-based hybrid A* (SHA*), which is faster than the traditional hybrid A*, is designed to provide an initial guess (also known as a global path) for the parking task. To extract the velocity and acceleration profile from an initial guess, an optimal control problem (OCP) is built. At the low level, an NMPC-based strategy is used to avoid dynamic obstacles (also known as local planning). The efficacy of SHA* is evaluated through 148 different simulation schemes and the proposed hierarchical parking framework is demonstrated through a real-time parallel parking simulation.

The capacity to achieve out-of-distribution (OOD) generalization is a hallmark of human intelligence and yet remains out of reach for machines. This remarkable capability has been attributed to our abilities to make conceptual abstraction and analogy, and to a mechanism known as indirection, which binds two representations and uses one representation to refer to the other. Inspired by these mechanisms, we hypothesize that OOD generalization may be achieved by performing analogy-making and indirection in the functional space instead of the data space as in current methods. To realize this, we design FINE (Functional Indirection Neural Estimator), a neural framework that learns to compose functions that map data input to output on-the-fly. FINE consists of a backbone network and a trainable semantic memory of basis weight matrices. Upon seeing a new input-output data pair, FINE dynamically constructs the backbone weights by mixing the basis weights. The mixing coefficients are indirectly computed through querying a separate corresponding semantic memory using the data pair. We demonstrate empirically that FINE can strongly improve out-of-distribution generalization on IQ tasks that involve geometric transformations. In particular, we train FINE and competing models on IQ tasks using images from the MNIST, Omniglot and CIFAR100 datasets and test on tasks with unseen image classes from one or different datasets and unseen transformation rules. FINE not only achieves the best performance on all tasks but also is able to adapt to small-scale data scenarios.

Predictive coding has emerged as a prominent model of how the brain learns through predictions, anticipating the importance accorded to predictive learning in recent AI architectures such as transformers. Here we propose a new framework for predictive coding called active predictive coding which can learn hierarchical world models and solve two radically different open problems in AI: (1) how do we learn compositional representations, e.g., part-whole hierarchies, for equivariant vision? and (2) how do we solve large-scale planning problems, which are hard for traditional reinforcement learning, by composing complex action sequences from primitive policies? Our approach exploits hypernetworks, self-supervised learning and reinforcement learning to learn hierarchical world models that combine task-invariant state transition networks and task-dependent policy networks at multiple abstraction levels. We demonstrate the viability of our approach on a variety of vision datasets (MNIST, FashionMNIST, Omniglot) as well as on a scalable hierarchical planning problem. Our results represent, to our knowledge, the first demonstration of a unified solution to the part-whole learning problem posed by Hinton, the nested reference frames problem posed by Hawkins, and the integrated state-action hierarchy learning problem in reinforcement learning.

Motion planning and control are crucial components of robotics applications. Here, spatio-temporal hard constraints like system dynamics and safety boundaries (e.g., obstacles in automated driving) restrict the robot's motions. Direct methods from optimal control solve a constrained optimization problem. However, in many applications finding a proper cost function is inherently difficult because of the weighting of partially conflicting objectives. On the other hand, Imitation Learning (IL) methods such as Behavior Cloning (BC) provide a intuitive framework for learning decision-making from offline demonstrations and constitute a promising avenue for planning and control in complex robot applications. Prior work primarily relied on soft-constraint approaches, which use additional auxiliary loss terms describing the constraints. However, catastrophic safety-critical failures might occur in out-of-distribution (OOD) scenarios. This work integrates the flexibility of IL with hard constraint handling in optimal control. Our approach constitutes a general framework for constraint robotic motion planning and control using offline IL. Hard constraints are integrated into the learning problem in a differentiable manner, via explicit completion and gradient-based correction. Simulated experiments of mobile robot navigation and automated driving provide evidence for the performance of the proposed method.

We present a system for collision-free control of a robot manipulator that uses only RGB views of the world. Perceptual input of a tabletop scene is provided by multiple images of an RGB camera (without depth) that is either handheld or mounted on the robot end effector. A NeRF-like process is used to reconstruct the 3D geometry of the scene, from which the Euclidean full signed distance function (ESDF) is computed. A model predictive control algorithm is then used to control the manipulator to reach a desired pose while avoiding obstacles in the ESDF. We show results on a real dataset collected and annotated in our lab.

A good estimation of the actions' cost is key in task planning for human-robot collaboration. The duration of an action depends on agents' capabilities and the correlation between actions performed simultaneously by the human and the robot. This paper proposes an approach to learning actions' costs and coupling between actions executed concurrently by humans and robots. We leverage the information from past executions to learn the average duration of each action and a synergy coefficient representing the effect of an action performed by the human on the duration of the action performed by the robot (and vice versa). We implement the proposed method in a simulated scenario where both agents can access the same area simultaneously. Safety measures require the robot to slow down when the human is close, denoting a bad synergy of tasks operating in the same area. We show that our approach can learn such bad couplings so that a task planner can leverage this information to find better plans.

In this work, we have implemented a SLAM-assisted navigation module for a real autonomous vehicle with unknown dynamics. The navigation objective is to reach a desired goal configuration along a collision-free trajectory while adhering to the dynamics of the system. Specifically, we use LiDAR-based Hector SLAM for building the map of the environment, detecting obstacles, and for tracking vehicle's conformance to the trajectory as it passes through various states. For motion planning, we use rapidly exploring random trees (RRTs) on a set of generated motion primitives to search for dynamically feasible trajectory sequences and collision-free path to the goal. We demonstrate complex maneuvers such as parallel parking, perpendicular parking, and reversing motion by the real vehicle in a constrained environment using the presented approach.

北京阿比特科技有限公司