亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transthoracic Echocardiography (TTE) is a fundamental, non-invasive diagnostic tool in cardiovascular medicine, enabling detailed visualization of cardiac structures crucial for diagnosing various heart conditions. Despite its widespread use, TTE ultrasound imaging faces inherent limitations, notably the trade-off between field of view (FoV) and resolution. This paper introduces a novel application of conditional Generative Adversarial Networks (cGANs), specifically designed to extend the FoV in TTE ultrasound imaging while maintaining high resolution. Our proposed cGAN architecture, termed echoGAN, demonstrates the capability to generate realistic anatomical structures through outpainting, effectively broadening the viewable area in medical imaging. This advancement has the potential to enhance both automatic and manual ultrasound navigation, offering a more comprehensive view that could significantly reduce the learning curve associated with ultrasound imaging and aid in more accurate diagnoses. The results confirm that echoGAN reliably reproduce detailed cardiac features, thereby promising a significant step forward in the field of non-invasive cardiac naviagation and diagnostics.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The study evaluates the efficacy of Conversational Artificial Intelligence (CAI) in rectifying cognitive biases and recognizing affect in human-AI interactions, which is crucial for digital mental health interventions. Cognitive biases (systematic deviations from normative thinking) affect mental health, intensifying conditions like depression and anxiety. Therapeutic chatbots can make cognitive-behavioral therapy (CBT) more accessible and affordable, offering scalable and immediate support. The research employs a structured methodology with clinical-based virtual case scenarios simulating typical user-bot interactions. Performance and affect recognition were assessed across two categories of cognitive biases: theory of mind biases (anthropomorphization of AI, overtrust in AI, attribution to AI) and autonomy biases (illusion of control, fundamental attribution error, just-world hypothesis). A qualitative feedback mechanism was used with an ordinal scale to quantify responses based on accuracy, therapeutic quality, and adherence to CBT principles. Therapeutic bots (Wysa, Youper) and general-use LLMs (GTP 3.5, GTP 4, Gemini Pro) were evaluated through scripted interactions, double-reviewed by cognitive scientists and a clinical psychologist. Statistical analysis showed therapeutic bots were consistently outperformed by non-therapeutic bots in bias rectification and in 4 out of 6 biases in affect recognition. The data suggests that non-therapeutic chatbots are more effective in addressing some cognitive biases.

The forecasting of disease progression from images is a holy grail for clinical decision making. However, this task is complicated by the inherent high dimensionality, temporal sparsity and sampling irregularity in longitudinal image acquisitions. Existing methods often rely on extracting hand-crafted features and performing time-series analysis in this vector space, leading to a loss of rich spatial information within the images. To overcome these challenges, we introduce ImageFlowNet, a novel framework that learns latent-space flow fields that evolve multiscale representations in joint embedding spaces using neural ODEs and SDEs to model disease progression in the image domain. Notably, ImageFlowNet learns multiscale joint representation spaces by combining cohorts of patients together so that information can be transferred between the patient samples. The dynamics then provide plausible trajectories of progression, with the SDE providing alternative trajectories from the same starting point. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We then demonstrate ImageFlowNet's effectiveness through empirical evaluations on three longitudinal medical image datasets depicting progression in retinal geographic atrophy, multiple sclerosis, and glioblastoma.

Evidence is accumulating in favour of using stereotactic ablative body radiotherapy (SABR) to treat multiple cancer lesions in the lung. Multi-lesion lung SABR plans are complex and require significant resources to create. In this work, we propose a novel two-stage latent transformer framework (LDFormer) for dose prediction of lung SABR plans with varying numbers of lesions. In the first stage, patient anatomical information and the dose distribution are encoded into a latent space. In the second stage, a transformer learns to predict the dose latent from the anatomical latents. Causal attention is modified to adapt to different numbers of lesions. LDFormer outperforms a state-of-the-art generative adversarial network on dose conformality in and around lesions, and the performance gap widens when considering overlapping lesions. LDFormer generates predictions of 3-D dose distributions in under 30s on consumer hardware, and has the potential to assist physicians with clinical decision making, reduce resource costs, and accelerate treatment planning.

Accurate segmentation of anatomical structures and abnormalities in medical images is crucial for computer-aided diagnosis and analysis. While deep learning techniques excel at this task, their computational demands pose challenges. Additionally, some cutting-edge segmentation methods, though effective for general object segmentation, may not be optimised for medical images. To address these issues, we propose Mini-Net, a lightweight segmentation network specifically designed for medical images. With fewer than 38,000 parameters, Mini-Net efficiently captures both high- and low-frequency features, enabling real-time applications in various medical imaging scenarios. We evaluate Mini-Net on various datasets, including DRIVE, STARE, ISIC-2016, ISIC-2018, and MoNuSeg, demonstrating its robustness and good performance compared to state-of-the-art methods.

Research into the detection of human activities from wearable sensors is a highly active field, benefiting numerous applications, from ambulatory monitoring of healthcare patients via fitness coaching to streamlining manual work processes. We present an empirical study that evaluates and contrasts four commonly employed annotation methods in user studies focused on in-the-wild data collection. For both the user-driven, in situ annotations, where participants annotate their activities during the actual recording process, and the recall methods, where participants retrospectively annotate their data at the end of each day, the participants had the flexibility to select their own set of activity classes and corresponding labels. Our study illustrates that different labeling methodologies directly impact the annotations' quality, as well as the capabilities of a deep learning classifier trained with the data. We noticed that in situ methods produce less but more precise labels than recall methods. Furthermore, we combined an activity diary with a visualization tool that enables the participant to inspect and label their activity data. Due to the introduction of such a tool were able to decrease missing annotations and increase the annotation consistency, and therefore the F1-Score of the deep learning model by up to 8% (ranging between 82.1 and 90.4% F1-Score). Furthermore, we discuss the advantages and disadvantages of the methods compared in our study, the biases they could introduce, and the consequences of their usage on human activity recognition studies as well as possible solutions.

Purpose:Generative Artificial Intelligence (GAI) models, such as ChatGPT, may inherit or amplify societal biases due to their training on extensive datasets. With the increasing usage of GAI by students, faculty, and staff in higher education institutions (HEIs), it is urgent to examine the ethical issues and potential biases associated with these technologies. Design/Approach/Methods:This scoping review aims to elucidate how biases related to GAI in HEIs have been researched and discussed in recent academic publications. We categorized the potential societal biases that GAI might cause in the field of higher education. Our review includes articles written in English, Chinese, and Japanese across four main databases, focusing on GAI usage in higher education and bias. Findings:Our findings reveal that while there is meaningful scholarly discussion around bias and discrimination concerning LLMs in the AI field, most articles addressing higher education approach the issue superficially. Few articles identify specific types of bias under different circumstances, and there is a notable lack of empirical research. Most papers in our review focus primarily on educational and research fields related to medicine and engineering, with some addressing English education. However, there is almost no discussion regarding the humanities and social sciences. Additionally, a significant portion of the current discourse is in English and primarily addresses English-speaking contexts. Originality/Value:To the best of our knowledge, our study is the first to summarize the potential societal biases in higher education. This review highlights the need for more in-depth studies and empirical work to understand the specific biases that GAI might introduce or amplify in educational settings, guiding the development of more ethical AI applications in higher education.

In distributed computing by mobile robots, robots are deployed over a region, continuous or discrete, operating through a sequence of \textit{look-compute-move} cycles. An extensive study has been carried out to understand the computational powers of different robot models. The models vary on the ability to 1)~remember constant size information and 2)~communicate constant size message. Depending on the abilities the different models are 1)~$\mathcal{OBLOT}$ (robots are oblivious and silent), 2)~$\mathcal{FSTA}$ (robots have finite states but silent), 3)~$\mathcal{FCOM}$ (robots are oblivious but can communicate constant size information) and, 4)~$\mathcal{LUMI}$ (robots have finite states and can communicate constant size information). Another factor that affects computational ability is the scheduler that decides the activation time of the robots. The main three schedulers are \textit{fully-synchronous}, \textit{semi-synchronous} and \textit{asynchronous}. Combining the models ($M$) with schedulers ($K$), we have twelve combinations $M^K$. In the euclidean domain, the comparisons between these twelve variants have been done in different works for transparent robots, opaque robots, and robots with limited visibility. There is a vacant space for similar works when robots are operating on discrete regions like networks. It demands separate research attention because there have been a series of works where robots operate on different networks, and there is a fundamental difference when robots are operating on a continuous domain versus a discrete domain in terms of robots' movement. This work contributes to filling the space by giving a full comparison table for all models with two synchronous schedulers: fully-synchronous and semi-synchronous.

We present a novel approach to automating the identification of risk factors for diseases from medical literature, leveraging pre-trained models in the bio-medical domain, while tuning them for the specific task. Faced with the challenges of the diverse and unstructured nature of medical articles, our study introduces a multi-step system to first identify relevant articles, then classify them based on the presence of risk factor discussions and, finally, extract specific risk factor information for a disease through a question-answering model. Our contributions include the development of a comprehensive pipeline for the automated extraction of risk factors and the compilation of several datasets, which can serve as valuable resources for further research in this area. These datasets encompass a wide range of diseases, as well as their associated risk factors, meticulously identified and validated through a fine-grained evaluation scheme. We conducted both automatic and thorough manual evaluation, demonstrating encouraging results. We also highlight the importance of improving models and expanding dataset comprehensiveness to keep pace with the rapidly evolving field of medical research.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.

北京阿比特科技有限公司