亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper examines distributional properties and predictive performance of the estimated maximum agreement linear predictor (MALP) introduced in Bottai, Kim, Lieberman, Luta, and Pena (2022) paper in The American Statistician, which is the linear predictor maximizing Lin's concordance correlation coefficient (CCC) between the predictor and the predictand. It is compared and contrasted, theoretically and through computer experiments, with the estimated least-squares linear predictor (LSLP). Finite-sample and asymptotic properties are obtained, and confidence intervals are also presented. The predictors are illustrated using two real data sets: an eye data set and a bodyfat data set. The results indicate that the estimated MALP is a viable alternative to the estimated LSLP if one desires a predictor whose predicted values possess higher agreement with the predictand values, as measured by the CCC.

相關內容

One of the primary reasons behind the success of neural networks has been the emergence of an array of new, highly-successful optimizers, perhaps most importantly the Adam optimizer. It is wiedely used for training neural networks, yet notoriously hard to interpret. Lacking a clear physical intuition, Adam is difficult to generalize to manifolds. Some attempts have been made to directly apply parts of the Adam algorithm to manifolds or to find an underlying structure, but a full generalization has remained elusive. In this work a new approach is presented that leverages the special structure of the manifolds which are relevant for optimization of neural networks, such as the Stiefel manifold, the symplectic Stiefel manifold, the Grassmann manifold and the symplectic Grassmann manifold: all of these are homogeneous spaces and as such admit a global tangent space representation. This global tangent space representation is used to perform all of the steps in the Adam optimizer. The resulting algorithm is then applied to train a transformer for which orthogonality constraints are enforced up to machine precision and we observe significant speed-ups in the training process. Optimization of neural networks where they weights do not lie on a manifold is identified as a special case of the presented framkework. This allows for a flexible implementation in which the learning rate is adapted simultaneously for all parameters, irrespective of whether they are an element of a general manifold or a vector space.

In this paper, we study the problem of optimal data collection for policy evaluation in linear bandits. In policy evaluation, we are given a target policy and asked to estimate the expected reward it will obtain when executed in a multi-armed bandit environment. Our work is the first work that focuses on such optimal data collection strategy for policy evaluation involving heteroscedastic reward noise in the linear bandit setting. We first formulate an optimal design for weighted least squares estimates in the heteroscedastic linear bandit setting that reduces the MSE of the value of the target policy. We then use this formulation to derive the optimal allocation of samples per action during data collection. We then introduce a novel algorithm SPEED (Structured Policy Evaluation Experimental Design) that tracks the optimal design and derive its regret with respect to the optimal design. Finally, we empirically validate that SPEED leads to policy evaluation with mean squared error comparable to the oracle strategy and significantly lower than simply running the target policy.

Off-policy learning (OPL) aims at finding improved policies from logged bandit data, often by minimizing the inverse propensity scoring (IPS) estimator of the risk. In this work, we investigate a smooth regularization for IPS, for which we derive a two-sided PAC-Bayes generalization bound. The bound is tractable, scalable, interpretable and provides learning certificates. In particular, it is also valid for standard IPS without making the assumption that the importance weights are bounded. We demonstrate the relevance of our approach and its favorable performance through a set of learning tasks. Since our bound holds for standard IPS, we are able to provide insight into when regularizing IPS is useful. Namely, we identify cases where regularization might not be needed. This goes against the belief that, in practice, clipped IPS often enjoys favorable performance than standard IPS in OPL.

We design replicable algorithms in the context of statistical clustering under the recently introduced notion of replicability from Impagliazzo et al. [2022]. According to this definition, a clustering algorithm is replicable if, with high probability, its output induces the exact same partition of the sample space after two executions on different inputs drawn from the same distribution, when its internal randomness is shared across the executions. We propose such algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their combinatorial counterparts in a black-box manner. In particular, we demonstrate a replicable $O(1)$-approximation algorithm for statistical Euclidean $k$-medians ($k$-means) with $\operatorname{poly}(d)$ sample complexity. We also describe an $O(1)$-approximation algorithm with an additional $O(1)$-additive error for statistical Euclidean $k$-centers, albeit with $\exp(d)$ sample complexity. In addition, we provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.

We introduce a random recursive tree model with two communities, called balanced community modulated random recursive tree, or BCMRT in short. In this setting, pairs of nodes of different type appear sequentially. Each one of them decides independently to attach to their own type with probability 1-q, or to the other type with probability q, and then chooses its parent uniformly within the set of existing nodes with the selected type. We find that the limiting degree distributions coincide for different q. Therefore, as far as inference is concerned, other statistics have to be studied. We first consider the setting where the time-labels of the nodes, i.e. their time of arrival, are observed but their type is not. In this setting, we design a consistent estimator for q and provide bounds for the feasibility of testing between two different values of q. Moreover, we show that if q is small enough, then it is possible to cluster in a way correlated with the true partition, even though the algorithm is exponential in time. In the unlabelled setting, i.e. when only the tree structure is observed, we show that it is possible to test between different values of q in a strictly better way than by random guessing. This follows from a delicate analysis of the sum-of-distances statistic.

We consider the adversarial linear contextual bandit setting, which allows for the loss functions associated with each of $K$ arms to change over time without restriction. Assuming the $d$-dimensional contexts are drawn from a fixed known distribution, the worst-case expected regret over the course of $T$ rounds is known to scale as $\tilde O(\sqrt{Kd T})$. Under the additional assumption that the density of the contexts is log-concave, we obtain a second-order bound of order $\tilde O(K\sqrt{d V_T})$ in terms of the cumulative second moment of the learner's losses $V_T$, and a closely related first-order bound of order $\tilde O(K\sqrt{d L_T^*})$ in terms of the cumulative loss of the best policy $L_T^*$. Since $V_T$ or $L_T^*$ may be significantly smaller than $T$, these improve over the worst-case regret whenever the environment is relatively benign. Our results are obtained using a truncated version of the continuous exponential weights algorithm over the probability simplex, which we analyse by exploiting a novel connection to the linear bandit setting without contexts.

Probabilistic solvers provide a flexible and efficient framework for simulation, uncertainty quantification, and inference in dynamical systems. However, like standard solvers, they suffer performance penalties for certain stiff systems, where small steps are required not for reasons of numerical accuracy but for the sake of stability. This issue is greatly alleviated in semi-linear problems by the probabilistic exponential integrators developed in this paper. By including the fast, linear dynamics in the prior, we arrive at a class of probabilistic integrators with favorable properties. Namely, they are proven to be L-stable, and in a certain case reduce to a classic exponential integrator -- with the added benefit of providing a probabilistic account of the numerical error. The method is also generalized to arbitrary non-linear systems by imposing piece-wise semi-linearity on the prior via Jacobians of the vector field at the previous estimates, resulting in probabilistic exponential Rosenbrock methods. We evaluate the proposed methods on multiple stiff differential equations and demonstrate their improved stability and efficiency over established probabilistic solvers. The present contribution thus expands the range of problems that can be effectively tackled within probabilistic numerics.

We study the problem of optimizing data storage and access costs on the cloud while ensuring that the desired performance or latency is unaffected. We first propose an optimizer that optimizes the data placement tier (on the cloud) and the choice of compression schemes to apply, for given data partitions with temporal access predictions. Secondly, we propose a model to learn the compression performance of multiple algorithms across data partitions in different formats to generate compression performance predictions on the fly, as inputs to the optimizer. Thirdly, we propose to approach the data partitioning problem fundamentally differently than the current default in most data lakes where partitioning is in the form of ingestion batches. We propose access pattern aware data partitioning and formulate an optimization problem that optimizes the size and reading costs of partitions subject to access patterns. We study the various optimization problems theoretically as well as empirically, and provide theoretical bounds as well as hardness results. We propose a unified pipeline of cost minimization, called SCOPe that combines the different modules. We extensively compare the performance of our methods with related baselines from the literature on TPC-H data as well as enterprise datasets (ranging from GB to PB in volume) and show that SCOPe substantially improves over the baselines. We show significant cost savings compared to platform baselines, of the order of 50% to 83% on enterprise Data Lake datasets that range from terabytes to petabytes in volume.

This paper deals with the problem of efficient sampling from a stochastic differential equation, given the drift function and the diffusion matrix. The proposed approach leverages a recent model for probabilities \cite{rudi2021psd} (the positive semi-definite -- PSD model) from which it is possible to obtain independent and identically distributed (i.i.d.) samples at precision $\varepsilon$ with a cost that is $m^2 d \log(1/\varepsilon)$ where $m$ is the dimension of the model, $d$ the dimension of the space. The proposed approach consists in: first, computing the PSD model that satisfies the Fokker-Planck equation (or its fractional variant) associated with the SDE, up to error $\varepsilon$, and then sampling from the resulting PSD model. Assuming some regularity of the Fokker-Planck solution (i.e. $\beta$-times differentiability plus some geometric condition on its zeros) We obtain an algorithm that: (a) in the preparatory phase obtains a PSD model with L2 distance $\varepsilon$ from the solution of the equation, with a model of dimension $m = \varepsilon^{-(d+1)/(\beta-2s)} (\log(1/\varepsilon))^{d+1}$ where $1/2\leq s\leq1$ is the fractional power to the Laplacian, and total computational complexity of $O(m^{3.5} \log(1/\varepsilon))$ and then (b) for Fokker-Planck equation, it is able to produce i.i.d.\ samples with error $\varepsilon$ in Wasserstein-1 distance, with a cost that is $O(d \varepsilon^{-2(d+1)/\beta-2} \log(1/\varepsilon)^{2d+3})$ per sample. This means that, if the probability associated with the SDE is somewhat regular, i.e. $\beta \geq 4d+2$, then the algorithm requires $O(\varepsilon^{-0.88} \log(1/\varepsilon)^{4.5d})$ in the preparatory phase, and $O(\varepsilon^{-1/2}\log(1/\varepsilon)^{2d+2})$ for each sample. Our results suggest that as the true solution gets smoother, we can circumvent the curse of dimensionality without requiring any sort of convexity.

Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.

北京阿比特科技有限公司