亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vectorial dual-bent functions have recently attracted some researchers' interest as they play a significant role in constructing partial difference sets, association schemes, bent partitions and linear codes. In this paper, we further study vectorial dual-bent functions $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$, where $2\leq m \leq \frac{n}{2}$, $V_{n}^{(p)}$ denotes an $n$-dimensional vector space over the prime field $\mathbb{F}_{p}$. We give new characterizations of certain vectorial dual-bent functions (called vectorial dual-bent functions with Condition A) in terms of amorphic association schemes, linear codes and generalized Hadamard matrices, respectively. When $p=2$, we characterize vectorial dual-bent functions with Condition A in terms of bent partitions. Furthermore, we characterize certain bent partitions in terms of amorphic association schemes, linear codes and generalized Hadamard matrices, respectively. For general vectorial dual-bent functions $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$ with $F(0)=0, F(x)=F(-x)$ and $2\leq m \leq \frac{n}{2}$, we give a necessary and sufficient condition on constructing association schemes. Based on such a result, more association schemes are constructed from vectorial dual-bent functions.

相關內容

The field of causal discovery develops model selection methods to infer cause-effect relations among a set of random variables. For this purpose, different modelling assumptions have been proposed to render cause-effect relations identifiable. One prominent assumption is that the joint distribution of the observed variables follows a linear non-Gaussian structural equation model. In this paper, we develop novel goodness-of-fit tests that assess the validity of this assumption in the basic setting without latent confounders as well as in extension to linear models that incorporate latent confounders. Our approach involves testing algebraic relations among second and higher moments that hold as a consequence of the linearity of the structural equations. Specifically, we show that the linearity implies rank constraints on matrices and tensors derived from moments. For a practical implementation of our tests, we consider a multiplier bootstrap method that uses incomplete U-statistics to estimate subdeterminants, as well as asymptotic approximations to the null distribution of singular values. The methods are illustrated, in particular, for the T\"ubingen collection of benchmark data sets on cause-effect pairs.

Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We then apply the inverse Fourier transform to obtain the covariance function (according to the Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. We are the first to discover its rationale and effectiveness for PDE solving. Next,we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to greatly promote computational efficiency and scalability, without any low-rank approximations. We show the advantage of our method in systematic experiments.

With the widespread application of causal inference, it is increasingly important to have tools which can test for the presence of causal effects in a diverse array of circumstances. In this vein we focus on the problem of testing for \emph{distributional} causal effects, where the treatment affects not just the mean, but also higher order moments of the distribution, as well as multidimensional or structured outcomes. We build upon a previously introduced framework, Counterfactual Mean Embeddings, for representing causal distributions within Reproducing Kernel Hilbert Spaces (RKHS) by proposing new, improved, estimators for the distributional embeddings. These improved estimators are inspired by doubly robust estimators of the causal mean, using a similar form within the kernel space. We analyse these estimators, proving they retain the doubly robust property and have improved convergence rates compared to the original estimators. This leads to new permutation based tests for distributional causal effects, using the estimators we propose as tests statistics. We experimentally and theoretically demonstrate the validity of our tests.

We assume to be given structural equations over discrete variables inducing a directed acyclic graph, namely, a structural causal model, together with data about its internal nodes. The question we want to answer is how we can compute bounds for partially identifiable counterfactual queries from such an input. We start by giving a map from structural casual models to credal networks. This allows us to compute exact counterfactual bounds via algorithms for credal nets on a subclass of structural causal models. Exact computation is going to be inefficient in general given that, as we show, causal inference is NP-hard even on polytrees. We target then approximate bounds via a causal EM scheme. We evaluate their accuracy by providing credible intervals on the quality of the approximation; we show through a synthetic benchmark that the EM scheme delivers accurate results in a fair number of runs. In the course of the discussion, we also point out what seems to be a neglected limitation to the trending idea that counterfactual bounds can be computed without knowledge of the structural equations. We also present a real case study on palliative care to show how our algorithms can readily be used for practical purposes.

We consider the problem of testing whether a single coefficient is equal to zero in fixed-design linear models under a moderately high-dimensional regime, where the dimension of covariates $p$ is allowed to be in the same order of magnitude as sample size $n$. In this regime, to achieve finite-population validity, existing methods usually require strong distributional assumptions on the noise vector (such as Gaussian or rotationally invariant), which limits their applications in practice. In this paper, we propose a new method, called residual permutation test (RPT), which is constructed by projecting the regression residuals onto the space orthogonal to the union of the column spaces of the original and permuted design matrices. RPT can be proved to achieve finite-population size validity under fixed design with just exchangeable noises, whenever $p < n / 2$. Moreover, RPT is shown to be asymptotically powerful for heavy tailed noises with bounded $(1+t)$-th order moment when the true coefficient is at least of order $n^{-t/(1+t)}$ for $t \in [0,1]$. We further proved that this signal size requirement is essentially rate-optimal in the minimax sense. Numerical studies confirm that RPT performs well in a wide range of simulation settings with normal and heavy-tailed noise distributions.

Reinforcement learning has been successful across several applications in which agents have to learn to act in environments with sparse feedback. However, despite this empirical success there is still a lack of theoretical understanding of how the parameters of reinforcement learning models and the features used to represent states interact to control the dynamics of learning. In this work, we use concepts from statistical physics, to study the typical case learning curves for temporal difference learning of a value function with linear function approximators. Our theory is derived under a Gaussian equivalence hypothesis where averages over the random trajectories are replaced with temporally correlated Gaussian feature averages and we validate our assumptions on small scale Markov Decision Processes. We find that the stochastic semi-gradient noise due to subsampling the space of possible episodes leads to significant plateaus in the value error, unlike in traditional gradient descent dynamics. We study how learning dynamics and plateaus depend on feature structure, learning rate, discount factor, and reward function. We then analyze how strategies like learning rate annealing and reward shaping can favorably alter learning dynamics and plateaus. To conclude, our work introduces new tools to open a new direction towards developing a theory of learning dynamics in reinforcement learning.

Employment selection processes that use automated hiring systems based on machine learning are becoming increasingly commonplace. Meanwhile, concerns about algorithmic direct and indirect discrimination that result from such systems are front-and-center, and the technical solutions provided by the research community often systematically deviate from the principle of equal treatment to combat disparate or adverse impacts on groups based on protected attributes. Those technical solutions are now being used in commercially available automated hiring systems, potentially engaging in real-world discrimination. Algorithmic fairness and algorithmic non-discrimination are not the same. This article examines a conflict between the two: whether such hiring systems are compliant with EU non-discrimination law.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司