In this work, we propose differentially private methods for hypothesis testing, model averaging, and model selection for normal linear models. We consider Bayesian methods based on mixtures of $g$-priors and non-Bayesian methods based on likelihood-ratio statistics and information criteria. The procedures are asymptotically consistent and straightforward to implement with existing software. We focus on practical issues such as adjusting critical values so that hypothesis tests have adequate type I error rates and quantifying the uncertainty introduced by the privacy-ensuring mechanisms.
In this paper, we introduce a new class of models for spatial data obtained from max-convolution processes based on indicator kernels with random shape. We show that this class of models have appealing dependence properties including tail dependence at short distances and independence at long distances. We further consider max-convolutions between such processes and processes with tail independence, in order to separately control the bulk and tail dependence behaviors, and to increase flexibility of the model at longer distances, in particular, to capture intermediate tail dependence. We show how parameters can be estimated using a weighted pairwise likelihood approach, and we conduct an extensive simulation study to show that the proposed inference approach is feasible in high dimensions and it yields accurate parameter estimates in most cases. We apply the proposed methodology to analyse daily temperature maxima measured at 100 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.
Engineers are often faced with the decision to select the most appropriate model for simulating the behavior of engineered systems, among a candidate set of models. Experimental monitoring data can generate significant value by supporting engineers toward such decisions. Such data can be leveraged within a Bayesian model updating process, enabling the uncertainty-aware calibration of any candidate model. The model selection task can subsequently be cast into a problem of decision-making under uncertainty, where one seeks to select the model that yields an optimal balance between the reward associated with model precision, in terms of recovering target Quantities of Interest (QoI), and the cost of each model, in terms of complexity and compute time. In this work, we examine the model selection task by means of Bayesian decision theory, under the prism of availability of models of various refinements, and thus varying levels of fidelity. In doing so, we offer an exemplary application of this framework on the IMAC-MVUQ Round-Robin Challenge. Numerical investigations show various outcomes of model selection depending on the target QoI.
Several distributions and families of distributions are proposed to model skewed data, think, e.g., of skew-normal and related distributions. Lambert W random variables offer an alternative approach where, instead of constructing a new distribution, a certain transform is proposed (Goerg, 2011). Such an approach allows the construction of a Lambert W skewed version from any distribution. We choose Lambert W normal distribution as a natural starting point and also include Lambert W exponential distribution due to the simplicity and shape of the exponential distribution, which, after skewing, may produce a reasonably heavy tail for loss models. In the theoretical part, we focus on the mathematical properties of obtained distributions, including the range of skewness. In the practical part, the suitability of corresponding Lambert W transformed distributions is evaluated on real insurance data. The results are compared with those obtained using common loss distributions.
This work is concerned with cone-beam computed tomography with circular source trajectory, where the reconstruction inverse problem requires an accurate knowledge of source, detector and rotational axis relative positions and orientations. We address this problem as a preceding step of the reconstruction process directly from the acquired projections. The method estimates both the detector shift (orthogonal to focal and rotational axes) and the in-plane detector rotation, relative to source and rotational axis. The obtained algorithm is based on a fan-beam symmetry condition and the variable projection optimization approach with a low computational cost. Therefore, the alignment problem for fan-beam tomography is addressed as well. The methods are validated with simulated and real industrial tomographic data with code examples available for both fan- and cone-beam geometries.
Complexity is a fundamental concept underlying statistical learning theory that aims to inform generalization performance. Parameter count, while successful in low-dimensional settings, is not well-justified for overparameterized settings when the number of parameters is more than the number of training samples. We revisit complexity measures based on Rissanen's principle of minimum description length (MDL) and define a novel MDL-based complexity (MDL-COMP) that remains valid for overparameterized models. MDL-COMP is defined via an optimality criterion over the encodings induced by a good Ridge estimator class. We provide an extensive theoretical characterization of MDL-COMP for linear models and kernel methods and show that it is not just a function of parameter count, but rather a function of the singular values of the design or the kernel matrix and the signal-to-noise ratio. For a linear model with $n$ observations, $d$ parameters, and i.i.d. Gaussian predictors, MDL-COMP scales linearly with $d$ when $d<n$, but the scaling is exponentially smaller -- $\log d$ for $d>n$. For kernel methods, we show that MDL-COMP informs minimax in-sample error, and can decrease as the dimensionality of the input increases. We also prove that MDL-COMP upper bounds the in-sample mean squared error (MSE). Via an array of simulations and real-data experiments, we show that a data-driven Prac-MDL-COMP informs hyper-parameter tuning for optimizing test MSE with ridge regression in limited data settings, sometimes improving upon cross-validation and (always) saving computational costs. Finally, our findings also suggest that the recently observed double decent phenomenons in overparameterized models might be a consequence of the choice of non-ideal estimators.
We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.
We propose a novel surrogate modelling approach to efficiently and accurately approximate the response of complex dynamical systems driven by time-varying exogenous excitations over extended time periods. Our approach, namely manifold nonlinear autoregressive modelling with exogenous input (mNARX), involves constructing a problem-specific exogenous input manifold that is optimal for constructing autoregressive surrogates. The manifold, which forms the core of mNARX, is constructed incrementally by incorporating the physics of the system, as well as prior expert- and domain- knowledge. Because mNARX decomposes the full problem into a series of smaller sub-problems, each with a lower complexity than the original, it scales well with the complexity of the problem, both in terms of training and evaluation costs of the final surrogate. Furthermore, mNARX synergizes well with traditional dimensionality reduction techniques, making it highly suitable for modelling dynamical systems with high-dimensional exogenous inputs, a class of problems that is typically challenging to solve. Since domain knowledge is particularly abundant in physical systems, such as those found in civil and mechanical engineering, mNARX is well suited for these applications. We demonstrate that mNARX outperforms traditional autoregressive surrogates in predicting the response of a classical coupled spring-mass system excited by a one-dimensional random excitation. Additionally, we show that mNARX is well suited for emulating very high-dimensional time- and state-dependent systems, even when affected by active controllers, by surrogating the dynamics of a realistic aero-servo-elastic onshore wind turbine simulator. In general, our results demonstrate that mNARX offers promising prospects for modelling complex dynamical systems, in terms of accuracy and efficiency.
Evaluating the predictive performance of a statistical model is commonly done using cross-validation. Although the leave-one-out method is frequently employed, its application is justified primarily for independent and identically distributed observations. However, this method tends to mimic interpolation rather than prediction when dealing with dependent observations. This paper proposes a modified cross-validation for dependent observations. This is achieved by excluding an automatically determined set of observations from the training set to mimic a more reasonable prediction scenario. Also, within the framework of latent Gaussian models, we illustrate a method to adjust the joint posterior for this modified cross-validation to avoid model refitting. This new approach is accessible in the R-INLA package (www.r-inla.org).
In this paper, we propose nonlocal diffusion models with Dirichlet boundary. These nonlocal diffusion models preserve the maximum principle and also have corresponding variational form. With these good properties, It is relatively easy to prove the well-posedness and the vanishing nonlocality convergence. Furthermore, by specifically designed weight function, we can get a nonlocal diffusion model with second order convergence which is optimal for nonlocal diffusion models.
In this work, we consider the problem of building distribution-free prediction intervals with finite-sample conditional coverage guarantees. Conformal prediction (CP) is an increasingly popular framework for building prediction intervals with distribution-free guarantees, but these guarantees only ensure marginal coverage: the probability of coverage is averaged over a random draw of both the training and test data, meaning that there might be substantial undercoverage within certain subpopulations. Instead, ideally, we would want to have local coverage guarantees that hold for each possible value of the test point's features. While the impossibility of achieving pointwise local coverage is well established in the literature, many variants of conformal prediction algorithm show favorable local coverage properties empirically. Relaxing the definition of local coverage can allow for a theoretical understanding of this empirical phenomenon. We aim to bridge this gap between theoretical validation and empirical performance by proving achievable and interpretable guarantees for a relaxed notion of local coverage. Building on the localized CP method of Guan (2023) and the weighted CP framework of Tibshirani et al. (2019), we propose a new method, randomly-localized conformal prediction (RLCP), which returns prediction intervals that are not only marginally valid but also achieve a relaxed local coverage guarantee and guarantees under covariate shift. Through a series of simulations and real data experiments, we validate these coverage guarantees of RLCP while comparing it with the other local conformal prediction methods.