To empower online grocery shoppers in making nutritionally and environmentally informed decisions, we investigate the efficacy of the Scale-Score, a label combining nutritional and environmental information to highlight a product's benefit to both the consumer's and the planet's health, without obscuring either information. We conducted an experimental study in a mock online grocery environment, and assessed label efficacy. We find that the Scale-Score supports nutritious purchases, yet needs improving regarding sustainability support. Our research shows first insights into design considerations and performance of a combined yet disjoint food label.
Despite the state-of-the-art performance of deep convolutional neural networks, they are susceptible to bias and malfunction in unseen situations. Moreover, the complex computation behind their reasoning is not human-understandable to develop trust. External explainer methods have tried to interpret network decisions in a human-understandable way, but they are accused of fallacies due to their assumptions and simplifications. On the other side, the inherent self-interpretability of models, while being more robust to the mentioned fallacies, cannot be applied to the already trained models. In this work, we propose a new attention-based pooling layer, called Local Attention Pooling (LAP), that accomplishes self-interpretability and the possibility for knowledge injection without performance loss. The module is easily pluggable into any convolutional neural network, even the already trained ones. We have defined a weakly supervised training scheme to learn the distinguishing features in decision-making without depending on experts' annotations. We verified our claims by evaluating several LAP-extended models on two datasets, including ImageNet. The proposed framework offers more valid human-understandable and faithful-to-the-model interpretations than the commonly used white-box explainer methods.
Due to the limited availability of data, existing few-shot learning methods trained from scratch fail to achieve satisfactory performance. In contrast, large-scale pre-trained models such as CLIP demonstrate remarkable few-shot and zero-shot capabilities. To enhance the performance of pre-trained models for downstream tasks, fine-tuning the model on downstream data is frequently necessary. However, fine-tuning the pre-trained model leads to a decrease in its generalizability in the presence of distribution shift, while the limited number of samples in few-shot learning makes the model highly susceptible to overfitting. Consequently, existing methods for fine-tuning few-shot learning primarily focus on fine-tuning the model's classification head or introducing additional structure. In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align). Our method aims to bolster the model's generalizability by preserving the consistency of spurious features across the fine-tuning process. Extensive experimental results validate the efficacy of our approach for both ID and OOD tasks. Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements. Our code can be found in //github.com/skingorz/FD-Align.
Video-based heart and respiratory rate measurements using facial videos are more useful and user-friendly than traditional contact-based sensors. However, most of the current deep learning approaches require ground-truth pulse and respiratory waves for model training, which are expensive to collect. In this paper, we propose CalibrationPhys, a self-supervised video-based heart and respiratory rate measurement method that calibrates between multiple cameras. CalibrationPhys trains deep learning models without supervised labels by using facial videos captured simultaneously by multiple cameras. Contrastive learning is performed so that the pulse and respiratory waves predicted from the synchronized videos using multiple cameras are positive and those from different videos are negative. CalibrationPhys also improves the robustness of the models by means of a data augmentation technique and successfully leverages a pre-trained model for a particular camera. Experimental results utilizing two datasets demonstrate that CalibrationPhys outperforms state-of-the-art heart and respiratory rate measurement methods. Since we optimize camera-specific models using only videos from multiple cameras, our approach makes it easy to use arbitrary cameras for heart and respiratory rate measurements.
This paper aims to investigate the open research problem of uncovering the social behaviors of LLM-based agents. To achieve this goal, we adopt Avalon, a representative communication game, as the environment and use system prompts to guide LLM agents to play the game. While previous studies have conducted preliminary investigations into gameplay with LLM agents, there lacks research on their social behaviors. In this paper, we present a novel framework designed to seamlessly adapt to Avalon gameplay. The core of our proposed framework is a multi-agent system that enables efficient communication and interaction among agents. We evaluate the performance of our framework based on metrics from two perspectives: winning the game and analyzing the social behaviors of LLM agents. Our results demonstrate the effectiveness of our framework in generating adaptive and intelligent agents and highlight the potential of LLM-based agents in addressing the challenges associated with dynamic social environment interaction. By analyzing the social behaviors of LLM agents from the aspects of both collaboration and confrontation, we provide insights into the research and applications of this domain.
In this paper, we revisit the inconsistency problem of EKF-based cooperative localization (CL) from the perspective of system decomposition. By transforming the linearized system used by the standard EKF into its Kalman observable canonical form, the observable and unobservable components of the system are separated. Consequently, the factors causing the dimension reduction of the unobservable subspace are explicitly isolated in the state propagation and measurement Jacobians of the Kalman observable canonical form. Motivated by these insights, we propose a new CL algorithm called KD-EKF which aims to enhance consistency. The key idea behind the KD-EKF algorithm involves perform state estimation in the transformed coordinates so as to eliminate the influencing factors of observability in the Kalman observable canonical form. As a result, the KD-EKF algorithm ensures correct observability properties and consistency. We extensively verify the effectiveness of the KD-EKF algorithm through both Monte Carlo simulations and real-world experiments. The results demonstrate that the KD-EKF outperforms state-of-the-art algorithms in terms of accuracy and consistency.
On any night in Canada, at least 35,000 individuals experience homelessness. These individuals use emergency shelters to transition out of homelessness and into permanent housing. We designed and deployed a technology to support front-line staff at the largest emergency housing shelter in Calgary, Canada. Over a period of five months in 2022, we worked closely with front-line staff to co-design an interface for supporting a holistic understanding of client context and facilitating decision-making. The tool is currently in-use and our collaboration is ongoing. In this paper, we reflect on preliminary findings regarding the second iteration of the tool. We find that supporting shelter staff in understanding the human behind the data was a critical component of design. This work contributes to literature on how data tools may be integrated into homeless shelters in a way that aligns with shelters' values.
Recent advancements in 4D scene reconstruction using neural radiance fields (NeRF) have demonstrated the ability to represent dynamic scenes from multi-view videos. However, they fail to reconstruct the dynamic scenes and struggle to fit even the training views in unsynchronized settings. It happens because they employ a single latent embedding for a frame while the multi-view images at the frame were actually captured at different moments. To address this limitation, we introduce time offsets for individual unsynchronized videos and jointly optimize the offsets with NeRF. By design, our method is applicable for various baselines and improves them with large margins. Furthermore, finding the offsets naturally works as synchronizing the videos without manual effort. Experiments are conducted on the common Plenoptic Video Dataset and a newly built Unsynchronized Dynamic Blender Dataset to verify the performance of our method. Project page: //seoha-kim.github.io/sync-nerf
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.
Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.