Research and application have used human-AI teaming (HAT) as a new paradigm to develop AI systems. HAT recognizes that AI will function as a teammate instead of simply a tool in collaboration with humans. Effective human-AI teams need to be capable of taking advantage of the unique abilities of both humans and AI while overcoming the known challenges and limitations of each member, augmenting human capabilities, and raising joint performance beyond that of either entity. The National AI Research and Strategic Plan 2023 update has recognized that research programs focusing primarily on the independent performance of AI systems generally fail to consider the functionality that AI must provide within the context of dynamic, adaptive, and collaborative teams and calls for further research on human-AI teaming and collaboration. However, there has been debate about whether AI can work as a teammate with humans. The primary concern is that adopting the "teaming" paradigm contradicts the human-centered AI (HCAI) approach, resulting in humans losing control of AI systems. This article further analyzes the HAT paradigm and the debates. Specifically, we elaborate on our proposed conceptual framework of human-AI joint cognitive systems (HAIJCS) and apply it to represent HAT under the HCAI umbrella. We believe that HAIJCS may help adopt HAI while enabling HCAI. The implications and future work for HAIJCS are also discussed. Insights: AI has led to the emergence of a new form of human-machine relationship: human-AI teaming (HAT), a paradigmatic shift in human-AI systems; We must follow a human-centered AI (HCAI) approach when applying HAT as a new design paradigm; We propose a conceptual framework of human-AI joint cognitive systems (HAIJCS) to represent and implement HAT for developing effective human-AI teaming
Trajectory prediction in traffic scenes involves accurately forecasting the behaviour of surrounding vehicles. To achieve this objective it is crucial to consider contextual information, including the driving path of vehicles, road topology, lane dividers, and traffic rules. Although studies demonstrated the potential of leveraging heterogeneous context for improving trajectory prediction, state-of-the-art deep learning approaches still rely on a limited subset of this information. This is mainly due to the limited availability of comprehensive representations. This paper presents an approach that utilizes knowledge graphs to model the diverse entities and their semantic connections within traffic scenes. Further, we present nuScenes Knowledge Graph (nSKG), a knowledge graph for the nuScenes dataset, that models explicitly all scene participants and road elements, as well as their semantic and spatial relationships. To facilitate the usage of the nSKG via graph neural networks for trajectory prediction, we provide the data in a format, ready-to-use by the PyG library. All artefacts can be found here: //github.com/boschresearch/nuScenes_Knowledge_Graph
Industrial control systems increasingly rely on middlebox functionality such as intrusion detection or in-network processing. However, traditional end-to-end security protocols interfere with the necessary access to in-flight data. While recent work on middlebox-aware end-to-end security protocols for the traditional Internet promises to address the dilemma between end-to-end security guarantees and middleboxes, the current state-of-the-art lacks critical features for industrial communication. Most importantly, industrial settings require fine-grained access control for middleboxes to truly operate in a least-privilege mode. Likewise, advanced applications even require that middleboxes can inject specific messages (e.g., emergency shutdowns). Meanwhile, industrial scenarios often expose tight latency and bandwidth constraints not found in the traditional Internet. As the current state-of-the-art misses critical features, we propose Middlebox-aware DTLS (Madtls), a middlebox-aware end-to-end security protocol specifically tailored to the needs of industrial networks. Madtls provides bit-level read and write access control of middleboxes to communicated data with minimal bandwidth and processing overhead, even on constrained hardware.
The Segment Anything Model (SAM) has recently emerged as a significant breakthrough in foundation models, demonstrating remarkable zero-shot performance in object segmentation tasks. While SAM is designed for generalization, it exhibits limitations in handling specific medical imaging tasks that require fine-structure segmentation or precise boundaries. In this paper, we focus on the task of cardiac magnetic resonance imaging (cMRI) short-axis view segmentation using the SAM foundation model. We conduct a comprehensive investigation of the impact of different prompting strategies (including bounding boxes, positive points, negative points, and their combinations) on segmentation performance. We evaluate on two public datasets using the baseline model and models fine-tuned with varying amounts of annotated data, ranging from a limited number of volumes to a fully annotated dataset. Our findings indicate that prompting strategies significantly influence segmentation performance. Combining positive points with either bounding boxes or negative points shows substantial benefits, but little to no benefit when combined simultaneously. We further observe that fine-tuning SAM with a few annotated volumes improves segmentation performance when properly prompted. Specifically, fine-tuning with bounding boxes has a positive impact, while fine-tuning without bounding boxes leads to worse results compared to baseline.
Robust Markov decision processes (MDPs) are used for applications of dynamic optimization in uncertain environments and have been studied extensively. Many of the main properties and algorithms of MDPs, such as value iteration and policy iteration, extend directly to RMDPs. Surprisingly, there is no known analog of the MDP convex optimization formulation for solving RMDPs. This work describes the first convex optimization formulation of RMDPs under the classical sa-rectangularity and s-rectangularity assumptions. By using entropic regularization and exponential change of variables, we derive a convex formulation with a number of variables and constraints polynomial in the number of states and actions, but with large coefficients in the constraints. We further simplify the formulation for RMDPs with polyhedral, ellipsoidal, or entropy-based uncertainty sets, showing that, in these cases, RMDPs can be reformulated as conic programs based on exponential cones, quadratic cones, and non-negative orthants. Our work opens a new research direction for RMDPs and can serve as a first step toward obtaining a tractable convex formulation of RMDPs.
Smart meters are of the basic elements in the so-called Smart Grid. These devices, connected to the Internet, keep bidirectional communication with other devices in the Smart Grid structure to allow remote readings and maintenance. As any other device connected to a network, smart meters become vulnerable to attacks with different purposes, like stealing data or altering readings. Nowadays, it is becoming more and more popular to buy and plug-and-play smart meters, additionally to those installed by the energy providers, to directly monitor the energy consumption at home. This option inherently entails security risks that are under the responsibility of householders. In this paper, we focus on an open solution based on Smartpi 2.0 devices with two purposes. On the one hand, we propose a network configuration and different data flows to exchange data (energy readings) in the home. These flows are designed to support collaborative among the devices in order to prevent external attacks and attempts of corrupting the data. On the other hand, we check the vulnerability by performing two kind of attacks (denial of service and stealing and changing data by using a malware). We conclude that, as expected, these devices are vulnerable to these attacks, but we provide mechanisms to detect both of them and to solve, by applying cooperation techniques
Recently, representation learning over graph networks has gained popularity, with various models showing promising results. Despite this, several challenges persist: 1) most methods are designed for static or discrete-time dynamic graphs; 2) existing continuous-time dynamic graph algorithms focus on a single evolving perspective; and 3) many continuous-time dynamic graph approaches necessitate numerous temporal neighbors to capture long-term dependencies. In response, this paper introduces the Multi-Perspective Feedback-Attention Coupling (MPFA) model. MPFA incorporates information from both evolving and raw perspectives, efficiently learning the interleaved dynamics of observed processes. The evolving perspective employs temporal self-attention to distinguish continuously evolving temporal neighbors for information aggregation. Through dynamic updates, this perspective can capture long-term dependencies using a small number of temporal neighbors. Meanwhile, the raw perspective utilizes a feedback attention module with growth characteristic coefficients to aggregate raw neighborhood information. Experimental results on a self-organizing dataset and seven public datasets validate the efficacy and competitiveness of our proposed model.
Although Gaussian processes (GPs) with deep kernels have been successfully used for meta-learning in regression tasks, its uncertainty estimation performance can be poor. We propose a meta-learning method for calibrating deep kernel GPs for improving regression uncertainty estimation performance with a limited number of training data. The proposed method meta-learns how to calibrate uncertainty using data from various tasks by minimizing the test expected calibration error, and uses the knowledge for unseen tasks. We design our model such that the adaptation and calibration for each task can be performed without iterative procedures, which enables effective meta-learning. In particular, a task-specific uncalibrated output distribution is modeled by a GP with a task-shared encoder network, and it is transformed to a calibrated one using a cumulative density function of a task-specific Gaussian mixture model (GMM). By integrating the GP and GMM into our neural network-based model, we can meta-learn model parameters in an end-to-end fashion. Our experiments demonstrate that the proposed method improves uncertainty estimation performance while keeping high regression performance compared with the existing methods using real-world datasets in few-shot settings.
Active reconfigurable intelligent surface (RIS) is a new RIS architecture that can reflect and amplify communication signals. It can provide enhanced performance gain compared to the conventional passive RIS systems that can only reflect the signals. On the other hand, the design problem of active RIS-aided systems is more challenging than the passive RIS-aided systems and its efficient algorithms are less studied. In this paper, we consider the sum rate maximization problem in the multiuser massive multiple-input single-output (MISO) downlink with the aid of a large-scale active RIS. Existing approaches usually resort to general optimization solvers and can be computationally prohibitive in the considered settings. We propose an efficient block successive upper bound minimization (BSUM) method, of which each step has a (semi) closed-form update. Thus, the proposed algorithm has an attractive low per-iteration complexity. By simulation, our proposed algorithm consumes much less computation than the existing approaches. In particular, when the MIMO and/or RIS sizes are large, our proposed algorithm can be orders-of-magnitude faster than existing approaches.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.