亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural implicit functions have brought impressive advances to the state-of-the-art of clothed human digitization from multiple or even single images. However, despite the progress, current arts still have difficulty generalizing to unseen images with complex cloth deformation and body poses. In this work, we present GarVerseLOD, a new dataset and framework that paves the way to achieving unprecedented robustness in high-fidelity 3D garment reconstruction from a single unconstrained image. Inspired by the recent success of large generative models, we believe that one key to addressing the generalization challenge lies in the quantity and quality of 3D garment data. Towards this end, GarVerseLOD collects 6,000 high-quality cloth models with fine-grained geometry details manually created by professional artists. In addition to the scale of training data, we observe that having disentangled granularities of geometry can play an important role in boosting the generalization capability and inference accuracy of the learned model. We hence craft GarVerseLOD as a hierarchical dataset with levels of details (LOD), spanning from detail-free stylized shape to pose-blended garment with pixel-aligned details. This allows us to make this highly under-constrained problem tractable by factorizing the inference into easier tasks, each narrowed down with smaller searching space. To ensure GarVerseLOD can generalize well to in-the-wild images, we propose a novel labeling paradigm based on conditional diffusion models to generate extensive paired images for each garment model with high photorealism. We evaluate our method on a massive amount of in-the-wild images. Experimental results demonstrate that GarVerseLOD can generate standalone garment pieces with significantly better quality than prior approaches. Project page: //garverselod.github.io/

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 多峰值 · 機器人 · 控制器 · 多樣性 ·
2024 年 12 月 17 日

Traditional reinforcement learning-based robotic control methods are often task-specific and fail to generalize across diverse environments or unseen objects and instructions. Visual Language Models (VLMs) demonstrate strong scene understanding and planning capabilities but lack the ability to generate actionable policies tailored to specific robotic embodiments. To address this, Visual-Language-Action (VLA) models have emerged, yet they face challenges in long-horizon spatial reasoning and grounded task planning. In this work, we propose the Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning, Emma-X. Emma-X leverages our constructed hierarchical embodiment dataset based on BridgeV2, containing 60,000 robot manipulation trajectories auto-annotated with grounded task reasoning and spatial guidance. Additionally, we introduce a trajectory segmentation strategy based on gripper states and motion trajectories, which can help mitigate hallucination in grounding subtask reasoning generation. Experimental results demonstrate that Emma-X achieves superior performance over competitive baselines, particularly in real-world robotic tasks requiring spatial reasoning.

The enhanced representational power and broad applicability of deep learning models have attracted significant interest from the research community in recent years. However, these models often struggle to perform effectively under domain shift conditions, where the training data (the source domain) is related to but exhibits different distributions from the testing data (the target domain). To address this challenge, previous studies have attempted to reduce the domain gap between source and target data by incorporating a few labeled target samples during training - a technique known as semi-supervised domain adaptation (SSDA). While this strategy has demonstrated notable improvements in classification performance, the network architectures used in these approaches primarily focus on exploiting the features of individual images, leaving room for improvement in capturing rich representations. In this study, we introduce a Hierarchical Graph of Nodes designed to simultaneously present representations at both feature and category levels. At the feature level, we introduce a local graph to identify the most relevant patches within an image, facilitating adaptability to defined main object representations. At the category level, we employ a global graph to aggregate the features from samples within the same category, thereby enriching overall representations. Extensive experiments on widely used SSDA benchmark datasets, including Office-Home, DomainNet, and VisDA2017, demonstrate that both quantitative and qualitative results substantiate the effectiveness of HiGDA, establishing it as a new state-of-the-art method.

Population protocols are a model of distributed computation in which an arbitrary number of indistinguishable finite-state agents interact in pairs to decide some property of their initial configuration. We investigate the behaviour of population protocols under adversarial faults that cause agents to silently crash and no longer interact with other agents. As a starting point, we consider the property ``the number of agents exceeds a given threshold $t$'', represented by the predicate $x \geq t$, and show that the standard protocol for $x \geq t$ is very fragile: one single crash in a computation with $x:=2t-1$ agents can already cause the protocol to answer incorrectly that $x \geq t$ does not hold. However, a slightly less known protocol is robust: for any number $t' \geq t$ of agents, at least $t' - t+1$ crashes must occur for the protocol to answer that the property does not hold. We formally define robustness for arbitrary population protocols, and investigate the question whether every predicate computable by population protocols has a robust protocol. Angluin et al. proved in 2007 that population protocols decide exactly the Presburger predicates, which can be represented as Boolean combinations of threshold predicates of the form $\sum_{i=1}^n a_i \cdot x_i \geq t$ for $a_1,...,a_n, t \in \mathbb{Z}$ and modulo prdicates of the form $\sum_{i=1}^n a_i \cdot x_i \bmod m \geq t $ for $a_1, \ldots, a_n, m, t \in \mathbb{N}$. We design robust protocols for all threshold and modulo predicates. We also show that, unfortunately, the techniques in the literature that construct a protocol for a Boolean combination of predicates given protocols for the conjuncts do not preserve robustness. So the question remains open.

We introduce the Coarse Payoff-Assessment Learning (CPAL) model, which captures reinforcement learning by boundedly rational decision-makers who focus on the aggregate outcomes of choosing among exogenously defined clusters of alternatives (similarity classes), rather than evaluating each alternative individually. Analyzing a smooth approximation of the model, we show that the learning dynamics exhibit steady-states corresponding to smooth Valuation Equilibria (Jehiel and Samet, 2007). We demonstrate the existence of multiple equilibria in decision trees with generic payoffs and establish the local asymptotic stability of pure equilibria when they occur. Conversely, when trivial choices featuring alternatives within the same similarity class yield sufficiently high payoffs, a unique mixed equilibrium emerges, characterized by indifferences between similarity classes, even under acute sensitivity to payoff differences. Finally, we prove that this unique mixed equilibrium is globally asymptotically stable under the CPAL dynamics.

Objective: Configuring a prosthetic leg is an integral part of the fitting process, but the personalization of a multi-modal powered knee-ankle prosthesis is often too complex to realize in a clinical environment. This paper develops both the technical means to individualize a hybrid kinematic-impedance controller for variable-incline walking and sit-stand transitions, and an intuitive Clinical Tuning Interface (CTI) that allows prosthetists to directly modify the controller behavior. Methods: Utilizing an established method for predicting kinematic gait individuality alongside a new parallel approach for kinetic individuality, we applied tuned characteristics exclusively from level-ground walking to personalize continuous-phase/task models of joint kinematics and impedance. To take advantage of this method, we developed a CTI that translates common clinical tuning parameters into model adjustments. We then conducted a case study involving an above-knee amputee participant where a prosthetist iteratively tuned the prosthesis in a simulated clinical session involving walking and sit-stand transitions. Results: The prosthetist fully tuned the multi-activity prosthesis controller in under 20 min. Each iteration of tuning (i.e., observation, parameter adjustment, and model reprocessing) took 2 min on average for walking and 1 min on average for sit-stand. The tuned behavior changes were appropriately manifested in the commanded prosthesis torques, both at the tuned tasks and across untuned tasks (inclines). Conclusion: The CTI leveraged able-bodied trends to efficiently personalize a wide array of walking tasks and sit-stand transitions. A case-study validated the CTI tuning method and demonstrated the efficiency necessary for powered knee-ankle prostheses to become clinically viable.

The capacity of LLMs to carry out automated qualitative analysis has been questioned by corpus linguists, and it has been argued that corpus-based discourse analysis incorporating LLMs is hindered by issues of unsatisfying performance, hallucination, and irreproducibility. Our proposed method, TACOMORE, aims to address these concerns by serving as an effective prompting framework in this domain. The framework consists of four principles, i.e., Task, Context, Model and Reproducibility, and specifies five fundamental elements of a good prompt, i.e., Role Description, Task Definition, Task Procedures, Contextual Information and Output Format. We conduct experiments on three LLMs, i.e., GPT-4o, Gemini-1.5-Pro and Gemini-1.5.Flash, and find that TACOMORE helps improve LLM performance in three representative discourse analysis tasks, i.e., the analysis of keywords, collocates and concordances, based on an open corpus of COVID-19 research articles. Our findings show the efficacy of the proposed prompting framework TACOMORE in corpus-based discourse analysis in terms of Accuracy, Ethicality, Reasoning, and Reproducibility, and provide novel insights into the application and evaluation of LLMs in automated qualitative studies.

Previous work finds that recent long-context language models fail to make equal use of information in the middle of their inputs, preferring pieces of information located at the tail ends which creates an undue bias in situations where we would like models to be equally capable of using different parts of the input. Thus far, the problem has mainly only been considered in settings with single pieces of critical information, leading us to question what happens when multiple necessary pieces of information are spread out over the inputs. Here, we demonstrate the effects of the "lost in the middle" problem in the multi-hop question answering setting -- in which multiple reasoning "hops" over disconnected documents are required -- and show that performance degrades not only with respect to the distance of information from the edges of the context, but also between pieces of information. Additionally, we experiment with means of alleviating the problem by reducing superfluous document contents through knowledge graph triple extraction and summarization, and prompting models to reason more thoroughly using chain-of-thought prompting.

Structure functions, which represent the moments of the increments of a stochastic process, are essential complementary statistics to power spectra for analysing the self-similar behaviour of a time series. However, many real-world environmental datasets, such as those collected by spacecraft monitoring the solar wind, contain gaps, which inevitably corrupt the statistics. The nature of this corruption for structure functions remains poorly understood - indeed, often overlooked. Here we simulate gaps in a large set of magnetic field intervals from Parker Solar Probe in order to characterize the behaviour of the structure function of a sparse time series of solar wind turbulence. We quantify the resultant error with regards to the overall shape of the structure function, and its slope in the inertial range. Noting the consistent underestimation of the true curve when using linear interpolation, we demonstrate the ability of an empirical correction factor to de-bias these estimates. This correction, "learnt" from the data from a single spacecraft, is shown to generalize well to data from a solar wind regime elsewhere in the heliosphere, producing smaller errors, on average, for missing fractions >25%. Given this success, we apply the correction to gap-affected Voyager intervals from the inner heliosheath and local interstellar medium, obtaining spectral indices similar to those from previous studies. This work provides a tool for future studies of fragmented solar wind time series, such as those from Voyager, MAVEN, and OMNI, as well as sparsely-sampled astrophysical and geophysical processes more generally.

Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司