亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A central quest of probing is to uncover how pre-trained models encode a linguistic property within their representations. An encoding, however, might be spurious-i.e., the model might not rely on it when making predictions. In this paper, we try to find encodings that the model actually uses, introducing a usage-based probing setup. We first choose a behavioral task which cannot be solved without using the linguistic property. Then, we attempt to remove the property by intervening on the model's representations. We contend that, if an encoding is used by the model, its removal should harm the performance on the chosen behavioral task. As a case study, we focus on how BERT encodes grammatical number, and on how it uses this encoding to solve the number agreement task. Experimentally, we find that BERT relies on a linear encoding of grammatical number to produce the correct behavioral output. We also find that BERT uses a separate encoding of grammatical number for nouns and verbs. Finally, we identify in which layers information about grammatical number is transferred from a noun to its head verb.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MICRO · Networking · Analysis · 圖像還原 ·
2022 年 6 月 9 日

Deep image prior (DIP) was recently introduced as an effective unsupervised approach for image restoration tasks. DIP represents the image to be recovered as the output of a deep convolutional neural network, and learns the network's parameters such that the output matches the corrupted observation. Despite its impressive reconstructive properties, the approach is slow when compared to supervisedly learned, or traditional reconstruction techniques. To address the computational challenge, we bestow DIP with a two-stage learning paradigm: (i) perform a supervised pretraining of the network on a simulated dataset; (ii) fine-tune the network's parameters to adapt to the target reconstruction task. We provide a thorough empirical analysis to shed insights into the impacts of pretraining in the context of image reconstruction. We showcase that pretraining considerably speeds up and stabilizes the subsequent reconstruction task from real-measured 2D and 3D micro computed tomography data of biological specimens. The code and additional experimental materials are available at //educateddip.github.io/docs.educated_deep_image_prior/.

Conditional independence (CI) tests underlie many approaches to model testing and structure learning in causal inference. Most existing CI tests for categorical and ordinal data stratify the sample by the conditioning variables, perform simple independence tests in each stratum, and combine the results. Unfortunately, the statistical power of this approach degrades rapidly as the number of conditioning variables increases. Here we propose a simple unified CI test for ordinal and categorical data that maintains reasonable calibration and power in high dimensions. We show that our test outperforms existing baselines in model testing and structure learning for dense directed graphical models while being comparable for sparse models. Our approach could be attractive for causal model testing because it is easy to implement, can be used with non-parametric or parametric probability models, has the symmetry property, and has reasonable computational requirements.

Data augmentation has been rare in the cyber security domain due to technical difficulties in altering data in a manner that is semantically consistent with the original data. This shortfall is particularly onerous given the unique difficulty of acquiring benign and malicious training data that runs into copyright restrictions, and that institutions like banks and governments receive targeted malware that will never exist in large quantities. We present MARVOLO, a binary mutator that programmatically grows malware (and benign) datasets in a manner that boosts the accuracy of ML-driven malware detectors. MARVOLO employs semantics-preserving code transformations that mimic the alterations that malware authors and defensive benign developers routinely make in practice , allowing us to generate meaningful augmented data. Crucially, semantics-preserving transformations also enable MARVOLO to safely propagate labels from original to newly-generated data samples without mandating expensive reverse engineering of binaries. Further, MARVOLO embeds several key optimizations that keep costs low for practitioners by maximizing the density of diverse data samples generated within a given time (or resource) budget. Experiments using wide-ranging commercial malware datasets and a recent ML-driven malware detector show that MARVOLO boosts accuracies by up to 5%, while operating on only a small fraction (15%) of the potential input binaries.

Translation of perceptual descriptors such as the perceived affective quality attributes in the soundscape standard (ISO/TS 12913-2:2018) is an inherently intricate task, especially if the target language is used in multiple countries. Despite geographical proximity and a shared language of Bahasa Melayu (Standard Malay), differences in culture and language education policies between Singapore and Malaysia could invoke peculiarities in the affective appraisal of sounds. To generate provisional translations of the eight perceived affective attributes -- eventful, vibrant, pleasant, calm, uneventful, monotonous, annoying, and chaotic -- into Bahasa Melayu that is applicable in both Singapore and Malaysia, a binational expert-led approach supplemented by a quantitative evaluation framework was adopted. A set of preliminary translation candidates were developed via a four-stage process, firstly by a qualified translator, which was then vetted by linguistics experts, followed by examination via an experiential evaluation, and finally reviewed by the core research team. A total of 66 participants were then recruited cross-nationally to quantitatively evaluate the preliminary translation candidates. Of the eight attributes, cross-national differences were observed only in the translation of annoying. For instance, "menjengkelkan" was found to be significantly less understood in Singapore than in Malaysia, as well as less understandable than "membingitkan" within Singapore. Results of the quantitative evaluation also revealed the imperfect nature of foreign language translations for perceptual descriptors, which suggests a possibility for exploring corrective measures.

Automated driving systems (ADS) are expected to be reliable and robust against a wide range of driving scenarios. Their decisions, first and foremost, must be well understood. Understanding a decision made by ADS is a great challenge, because it is not straightforward to tell whether the decision is correct or not, and how to verify it systematically. In this paper, a Sequential MetAmoRphic Testing Smart framework is proposed based on metamorphic testing, a mainstream software testing approach. In metamorphic testing, metamorphic groups are constructed by selecting multiple inputs according to the so-called metamorphic relations, which are basically the system's necessary properties; the violation of certain relations by some corresponding metamorphic groups implies the detection of erroneous system behaviors. The proposed framework makes use of sequences of metamorphic groups to understand ADS behaviors, and is applicable without the need of ground-truth datasets. To demonstrate its effectiveness, the framework is applied to test three ADS models that steer an autonomous car in different scenarios with another car either leading in front or approaching in the opposite direction. The conducted experiments reveal a large number of undesirable behaviors in these top-ranked deep learning models in the scenarios. These counter-intuitive behaviors are associated with how the core models of ADS respond to different positions, directions and properties of the other car in its proximity. Further analysis of the results helps identify critical factors affecting ADS decisions and thus demonstrates that the framework can be used to provide a comprehensive understanding of ADS before their deployment

This work presents a new procedure for obtaining predictive distributions in the context of Gaussian process (GP) modeling, with a relaxation of the interpolation constraints outside some ranges of interest: the mean of the predictive distributions no longer necessarily interpolates the observed values when they are outside ranges of interest, but are simply constrained to remain outside. This method called relaxed Gaussian process (reGP) interpolation provides better predictive distributions in ranges of interest, especially in cases where a stationarity assumption for the GP model is not appropriate. It can be viewed as a goal-oriented method and becomes particularly interesting in Bayesian optimization, for example, for the minimization of an objective function, where good predictive distributions for low function values are important. When the expected improvement criterion and reGP are used for sequentially choosing evaluation points, the convergence of the resulting optimization algorithm is theoretically guaranteed (provided that the function to be optimized lies in the reproducing kernel Hilbert spaces attached to the known covariance of the underlying Gaussian process). Experiments indicate that using reGP instead of stationary GP models in Bayesian optimization is beneficial.

Training machine learning models in a meaningful order, from the easy samples to the hard ones, using curriculum learning can provide performance improvements over the standard training approach based on random data shuffling, without any additional computational costs. Curriculum learning strategies have been successfully employed in all areas of machine learning, in a wide range of tasks. However, the necessity of finding a way to rank the samples from easy to hard, as well as the right pacing function for introducing more difficult data can limit the usage of the curriculum approaches. In this survey, we show how these limits have been tackled in the literature, and we present different curriculum learning instantiations for various tasks in machine learning. We construct a multi-perspective taxonomy of curriculum learning approaches by hand, considering various classification criteria. We further build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm, linking the discovered clusters with our taxonomy. At the end, we provide some interesting directions for future work.

北京阿比特科技有限公司