亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new high order semi-implicit scheme for the all Mach full Euler equations of gas dynamics. Material waves are treated explicitly, while acoustic waves are treated implicitly, thus avoiding severe CFL restrictions for low Mach flows. High order accuracy in time is obtained by semi-implicit temporal integrator based on the IMEX Runge-Kutta (IMEX-RK) framework. High order in space is achieved by finite difference WENO schemes with characteristic-wise reconstructions adapted to the semi-implicit IMEX-RK time discretization. Type A IMEX schemes are constructed to handle not well-prepared initial conditions. Besides, these schemes are proven to be asymptotic preserving and asymptotically accurate as the Mach number vanishes for well-prepared initial conditions. Divergence-free property of the time-discrete schemes is proved. The proposed scheme can also well capture discontinuous solutions in the compressible regime, especially for two dimensional Riemann problems. Numerical tests in one and two space dimensions will illustrate the effectiveness of the proposed schemes.

相關內容

Similarity search is a key operation in multimedia retrieval systems and recommender systems, and it will play an important role also for future machine learning and augmented reality applications. When these systems need to serve large objects with tight delay constraints, edge servers close to the end-user can operate as similarity caches to speed up the retrieval. In this paper we present A\c{C}AI, a new similarity caching policy which improves on the state of the art by using (i) an (approximate) index for the whole catalog to decide which objects to serve locally and which to retrieve from the remote server, and (ii) a mirror ascent algorithm to update the set of local objects with strong guarantees even when the request process does not exhibit any statistical regularity.

Many economic and scientific problems involve the analysis of high-dimensional functional time series, where the number of functional variables ($p$) diverges as the number of serially dependent observations ($n$) increases. In this paper, we present a novel functional factor model for high-dimensional functional time series that maintains and makes use of the functional and dynamic structure to achieve great dimension reduction and find the latent factor structure. To estimate the number of functional factors and the factor loadings, we propose a fully functional estimation procedure based on an eigenanalysis for a nonnegative definite matrix. Our proposal involves a weight matrix to improve the estimation efficiency and tackle the issue of heterogeneity, the rationality of which is illustrated by formulating the estimation from a novel regression perspective. Asymptotic properties of the proposed method are studied when $p$ diverges at some polynomial rate as $n$ increases. To provide a parsimonious model and enhance interpretability for near-zero factor loadings, we impose sparsity assumptions on the factor loading space and then develop a regularized estimation procedure with theoretical guarantees when $p$ grows exponentially fast relative to $n.$ Finally, we demonstrate that our proposed estimators significantly outperform the competing methods through both simulations and applications to a U.K. temperature dataset and a Japanese mortality dataset.

Solving the time-dependent Schr\"odinger equation is an important application area for quantum algorithms. We consider Schr\"odinger's equation in the semi-classical regime. Here the solutions exhibit strong multiple-scale behavior due to a small parameter $\hbar$, in the sense that the dynamics of the quantum states and the induced observables can occur on different spatial and temporal scales. Such a Schr\"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics. This paper considers quantum analogues of pseudo-spectral (PS) methods on classical computers. Estimates on the gate counts in terms of $\hbar$ and the precision $\varepsilon$ are obtained. It is found that the number of required qubits, $m$, scales only logarithmically with respect to $\hbar$. When the solution has bounded derivatives up to order $\ell$, the symmetric Trotting method has gate complexity $\mathcal{O}\Big({ (\varepsilon \hbar)^{-\frac12} \mathrm{polylog}(\varepsilon^{-\frac{3}{2\ell}} \hbar^{-1-\frac{1}{2\ell}})}\Big),$ provided that the diagonal unitary operators in the pseudo-spectral methods can be implemented with $\mathrm{poly}(m)$ operations. When physical observables are the desired outcomes, however, the step size in the time integration can be chosen independently of $\hbar$. The gate complexity in this case is reduced to $\mathcal{O}\Big({\varepsilon^{-\frac12} \mathrm{polylog}( \varepsilon^{-\frac3{2\ell}} \hbar^{-1} )}\Big),$ with $\ell$ again indicating the smoothness of the solution.

Inferential models (IMs) are data-dependent, probability-like structures designed to quantify uncertainty about unknowns. As the name suggests, the focus has been on uncertainty quantification for inference, and on establishing a validity property that ensures the IM is reliable in a specific sense. The present paper develops an IM framework for decision problems and, in particular, investigates the decision-theoretic implications of the aforementioned validity property. I show that a valid IM's assessment of an action's quality, defined by a Choquet integral, will not be too optimistic compared to that of an oracle. This ensures that a valid IM tends not to favor actions that the oracle doesn't also favor, hence a valid IM is reliable for decision-making too. In a certain special class of structured statistical models, further connections can be made between the valid IM's favored actions and those favored by other more familiar frameworks, from which certain optimality conclusions can be drawn. An important step in these decision-theoretic developments is a characterization of the valid IM's credal set in terms of confidence distributions, which may be of independent interest.

Backtracking search algorithms are often used to solve the Constraint Satisfaction Problem (CSP). The efficiency of backtracking search depends greatly on the variable ordering heuristics. Currently, the most commonly used heuristics are hand-crafted based on expert knowledge. In this paper, we propose a deep reinforcement learning based approach to automatically discover new variable ordering heuristics that are better adapted for a given class of CSP instances. We show that directly optimizing the search cost is hard for bootstrapping, and propose to optimize the expected cost of reaching a leaf node in the search tree. To capture the complex relations among the variables and constraints, we design a representation scheme based on Graph Neural Network that can process CSP instances with different sizes and constraint arities. Experimental results on random CSP instances show that the learned policies outperform classical hand-crafted heuristics in terms of minimizing the search tree size, and can effectively generalize to instances that are larger than those used in training.

A Gibbs distribution based combinatorial optimization algorithm for joint antenna splitting and user scheduling problem in full duplex massive multiple-input multiple-output (MIMO) system is proposed in this paper. The optimal solution of this problem can be determined by exhaustive search. However, the complexity of this approach becomes prohibitive in practice when the sample space is large, which is usually the case in massive MIMO systems. Our algorithm overcomes this drawback by converting the original problem into a Kullback-Leibler (KL) divergence minimization problem, and solving it through a related dynamical system via a stochastic gradient descent method. Using this approach, we improve the spectral efficiency (SE) of the system by performing joint antenna splitting and user scheduling. Additionally, numerical results show that the SE curves obtained with our proposed algorithm overlap with the curves achieved by exhaustive search for user scheduling.

Matrix valued data has become increasingly prevalent in many applications. Most of the existing clustering methods for this type of data are tailored to the mean model and do not account for the dependence structure of the features, which can be very informative, especially in high-dimensional settings. To extract the information from the dependence structure for clustering, we propose a new latent variable model for the features arranged in matrix form, with some unknown membership matrices representing the clusters for the rows and columns. Under this model, we further propose a class of hierarchical clustering algorithms using the difference of a weighted covariance matrix as the dissimilarity measure. Theoretically, we show that under mild conditions, our algorithm attains clustering consistency in the high-dimensional setting. While this consistency result holds for our algorithm with a broad class of weighted covariance matrices, the conditions for this result depend on the choice of the weight. To investigate how the weight affects the theoretical performance of our algorithm, we establish the minimax lower bound for clustering under our latent variable model. Given these results, we identify the optimal weight in the sense that using this weight guarantees our algorithm to be minimax rate-optimal in terms of the magnitude of some cluster separation metric. The practical implementation of our algorithm with the optimal weight is also discussed. Finally, we conduct simulation studies to evaluate the finite sample performance of our algorithm and apply the method to a genomic dataset.

Retrosynthetic planning is a fundamental problem in chemistry for finding a pathway of reactions to synthesize a target molecule. Recently, search algorithms have shown promising results for solving this problem by using deep neural networks (DNNs) to expand their candidate solutions, i.e., adding new reactions to reaction pathways. However, the existing works on this line are suboptimal; the retrosynthetic planning problem requires the reaction pathways to be (a) represented by real-world reactions and (b) executable using "building block" molecules, yet the DNNs expand reaction pathways without fully incorporating such requirements. Motivated by this, we propose an end-to-end framework for directly training the DNNs towards generating reaction pathways with the desirable properties. Our main idea is based on a self-improving procedure that trains the model to imitate successful trajectories found by itself. We also propose a novel reaction augmentation scheme based on a forward reaction model. Our experiments demonstrate that our scheme significantly improves the success rate of solving the retrosynthetic problem from 86.84% to 96.32% while maintaining the performance of DNN for predicting valid reactions.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

Networks provide a powerful formalism for modeling complex systems, by representing the underlying set of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once; for example, communication within a group rather than person-to-person, collaboration among a team rather than a pair of co-authors, or biological interaction between a set of molecules rather than just two. We refer to these type of simultaneous interactions on sets of more than two nodes as higher-order interactions; they are ubiquitous, but the empirical study of them has lacked a general framework for evaluating higher-order models. Here we introduce such a framework, based on link prediction, a fundamental problem in network analysis. The traditional link prediction problem seeks to predict the appearance of new links in a network, and here we adapt it to predict which (larger) sets of elements will have future interactions. We study the temporal evolution of 19 datasets from a variety of domains, and use our higher-order formulation of link prediction to assess the types of structural features that are most predictive of new multi-way interactions. Among our results, we find that different domains vary considerably in their distribution of higher-order structural parameters, and that the higher-order link prediction problem exhibits some fundamental differences from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.

北京阿比特科技有限公司