Deep learning-based methods have demonstrated encouraging results in tackling the task of panoramic image inpainting. However, it is challenging for existing methods to distinguish valid pixels from invalid pixels and find suitable references for corrupted areas, thus leading to artifacts in the inpainted results. In response to these challenges, we propose a panoramic image inpainting framework that consists of a Face Generator, a Cube Generator, a side branch, and two discriminators. We use the Cubemap Projection (CMP) format as network input. The generator employs gated convolutions to distinguish valid pixels from invalid ones, while a side branch is designed utilizing contextual reconstruction (CR) loss to guide the generators to find the most suitable reference patch for inpainting the missing region. The proposed method is compared with state-of-the-art (SOTA) methods on SUN360 Street View dataset in terms of PSNR and SSIM. Experimental results and ablation study demonstrate that the proposed method outperforms SOTA both quantitatively and qualitatively.
Policy gradient methods hold great potential for solving complex continuous control tasks. Still, their training efficiency can be improved by exploiting structure within the optimization problem. Recent work indicates that supervised learning can be accelerated by leveraging the fact that gradients lie in a low-dimensional and slowly-changing subspace. In this paper, we conduct a thorough evaluation of this phenomenon for two popular deep policy gradient methods on various simulated benchmark tasks. Our results demonstrate the existence of such gradient subspaces despite the continuously changing data distribution inherent to reinforcement learning. These findings reveal promising directions for future work on more efficient reinforcement learning, e.g., through improving parameter-space exploration or enabling second-order optimization.
Hybrid Reinforcement Learning (RL), leveraging both online and offline data, has garnered recent interest, yet research on its provable benefits remains sparse. Additionally, many existing hybrid RL algorithms (Song et al., 2023; Nakamoto et al., 2023; Amortila et al., 2024) impose coverage assumptions on the offline dataset, but we show that this is unnecessary. A well-designed online algorithm should "fill in the gaps" in the offline dataset, exploring states and actions that the behavior policy did not explore. Unlike previous approaches that focus on estimating the offline data distribution to guide online exploration (Li et al., 2023b), we show that a natural extension to standard optimistic online algorithms -- warm-starting them by including the offline dataset in the experience replay buffer -- achieves similar provable gains from hybrid data even when the offline dataset does not have single-policy concentrability. We accomplish this by partitioning the state-action space into two, bounding the regret on each partition through an offline and an online complexity measure, and showing that the regret of this hybrid RL algorithm can be characterized by the best partition -- despite the algorithm not knowing the partition itself. As an example, we propose DISC-GOLF, a modification of an existing optimistic online algorithm with general function approximation called GOLF used in Jin et al. (2021); Xie et al. (2022a), and show that it demonstrates provable gains over both online-only and offline-only reinforcement learning, with competitive bounds when specialized to the tabular, linear and block MDP cases. Numerical simulations further validate our theory that hybrid data facilitates more efficient exploration, supporting the potential of hybrid RL in various scenarios.
The rapid expansion of varied network systems, including the Internet of Things (IoT) and Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning based IDS where training samples of attacks are not required: 1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; 2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks.
The representation space of neural models for textual data emerges in an unsupervised manner during training. Understanding how those representations encode human-interpretable concepts is a fundamental problem. One prominent approach for the identification of concepts in neural representations is searching for a linear subspace whose erasure prevents the prediction of the concept from the representations. However, while many linear erasure algorithms are tractable and interpretable, neural networks do not necessarily represent concepts in a linear manner. To identify non-linearly encoded concepts, we propose a kernelization of a linear minimax game for concept erasure. We demonstrate that it is possible to prevent specific non-linear adversaries from predicting the concept. However, the protection does not transfer to different nonlinear adversaries. Therefore, exhaustively erasing a non-linearly encoded concept remains an open problem.
Sorting is a fundamental operation of all computer systems, having been a long-standing significant research topic. Beyond the problem formulation of traditional sorting algorithms, we consider sorting problems for more abstract yet expressive inputs, e.g., multi-digit images and image fragments, through a neural sorting network. To learn a mapping from a high-dimensional input to an ordinal variable, the differentiability of sorting networks needs to be guaranteed. In this paper we define a softening error by a differentiable swap function, and develop an error-free swap function that holds a non-decreasing condition and differentiability. Furthermore, a permutation-equivariant Transformer network with multi-head attention is adopted to capture dependency between given inputs and also leverage its model capacity with self-attention. Experiments on diverse sorting benchmarks show that our methods perform better than or comparable to baseline methods.
The aim of the Prague Relational Learning Repository is to support machine learning research with multi-relational data. The repository currently contains 148 SQL databases hosted on a public MySQL server located at \url{//relational-data.org}. The server is provided by getML to support the relational machine learning community (\url{www.getml.com}). A searchable meta-database provides metadata (e.g., the number of tables in the database, the number of rows and columns in the tables, the number of self-relationships).
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.
The content based image retrieval aims to find the similar images from a large scale dataset against a query image. Generally, the similarity between the representative features of the query image and dataset images is used to rank the images for retrieval. In early days, various hand designed feature descriptors have been investigated based on the visual cues such as color, texture, shape, etc. that represent the images. However, the deep learning has emerged as a dominating alternative of hand-designed feature engineering from a decade. It learns the features automatically from the data. This paper presents a comprehensive survey of deep learning based developments in the past decade for content based image retrieval. The categorization of existing state-of-the-art methods from different perspectives is also performed for greater understanding of the progress. The taxonomy used in this survey covers different supervision, different networks, different descriptor type and different retrieval type. A performance analysis is also performed using the state-of-the-art methods. The insights are also presented for the benefit of the researchers to observe the progress and to make the best choices. The survey presented in this paper will help in further research progress in image retrieval using deep learning.
In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.
Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.