亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is challenging to implement Kernel methods, if the data sources are distributed and cannot be joined at a trusted third party for privacy reasons. It is even more challenging, if the use case rules out privacy-preserving approaches that introduce noise. An example for such a use case is machine learning on clinical data. To realize exact privacy preserving computation of kernel methods, we propose FLAKE, a Federated Learning Approach for KErnel methods on horizontally distributed data. With FLAKE, the data sources mask their data so that a centralized instance can compute a Gram matrix without compromising privacy. The Gram matrix allows to calculate many kernel matrices, which can be used to train kernel-based machine learning algorithms such as Support Vector Machines. We prove that FLAKE prevents an adversary from learning the input data or the number of input features under a semi-honest threat model. Experiments on clinical and synthetic data confirm that FLAKE is outperforming the accuracy and efficiency of comparable methods. The time needed to mask the data and to compute the Gram matrix is several orders of magnitude less than the time a Support Vector Machine needs to be trained. Thus, FLAKE can be applied to many use cases.

相關內容

We study few-shot Natural Language Understanding (NLU) tasks with Large Language Models (LLMs) in federated learning (FL) scenarios. It is a challenging task due to limited labeled data and communication capacities in FL, especially with mobile devices. Recent studies show LLMs can be prompted to perform few-shot NLU tasks like sentiment analysis and arithmetic reasoning. However, the huge sizes of LLMs result in high computation and communication costs, making classical FL schemes impractical. To address these challenges, we propose Low-Parameter Federated Learning (LP-FL). LP-FL combines few-shot prompt learning from LLMs with efficient communication and federating techniques. Our approach enables federated clients to assign soft labels to unlabeled data using gradually learned knowledge from the global model. Through iterative soft-label assigning, we continually expand the labeled set during the FL process. Additionally, to reduce computation and communication costs, LP-FL utilizes the Low-Rank Adaptation (LoRA) technique for compact learnable parameter construction, efficient local model fine-tuning, and affordable global model federation. LP-FL consistently outperforms Full-Parameter Federated Learning (FP-FL) in sentiment analysis tasks across various FL settings. Its resistance to overfitting allows LP-FL to equal or surpass centralized training in few-shot scenarios.

Traditional federated learning uses the number of samples to calculate the weights of each client model and uses this fixed weight value to fusion the global model. However, in practical scenarios, each client's device and data heterogeneity leads to differences in the quality of each client's model. Thus the contribution to the global model is not wholly determined by the sample size. In addition, if clients intentionally upload low-quality or malicious models, using these models for aggregation will lead to a severe decrease in global model accuracy. Traditional federated learning algorithms do not address these issues. To solve this probelm, we propose FedDRL, a model fusion approach using reinforcement learning based on a two staged approach. In the first stage, Our method could filter out malicious models and selects trusted client models to participate in the model fusion. In the second stage, the FedDRL algorithm adaptively adjusts the weights of the trusted client models and aggregates the optimal global model. We also define five model fusion scenarios and compare our method with two baseline algorithms in those scenarios. The experimental results show that our algorithm has higher reliability than other algorithms while maintaining accuracy.

The use of distributed optimization in machine learning can be motivated either by the resulting preservation of privacy or the increase in computational efficiency. On the one hand, training data might be stored across multiple devices. Training a global model within a network where each node only has access to its confidential data requires the use of distributed algorithms. Even if the data is not confidential, sharing it might be prohibitive due to bandwidth limitations. On the other hand, the ever-increasing amount of available data leads to large-scale machine learning problems. By splitting the training process across multiple nodes its efficiency can be significantly increased. This paper aims to demonstrate how dual decomposition can be applied for distributed training of $ K $-means clustering problems. After an overview of distributed and federated machine learning, the mixed-integer quadratically constrained programming-based formulation of the $ K $-means clustering training problem is presented. The training can be performed in a distributed manner by splitting the data across different nodes and linking these nodes through consensus constraints. Finally, the performance of the subgradient method, the bundle trust method, and the quasi-Newton dual ascent algorithm are evaluated on a set of benchmark problems. While the mixed-integer programming-based formulation of the clustering problems suffers from weak integer relaxations, the presented approach can potentially be used to enable an efficient solution in the future, both in a central and distributed setting.

Federated learning (FL) was originally regarded as a framework for collaborative learning among clients with data privacy protection through a coordinating server. In this paper, we propose a new active membership inference (AMI) attack carried out by a dishonest server in FL. In AMI attacks, the server crafts and embeds malicious parameters into global models to effectively infer whether a target data sample is included in a client's private training data or not. By exploiting the correlation among data features through a non-linear decision boundary, AMI attacks with a certified guarantee of success can achieve severely high success rates under rigorous local differential privacy (LDP) protection; thereby exposing clients' training data to significant privacy risk. Theoretical and experimental results on several benchmark datasets show that adding sufficient privacy-preserving noise to prevent our attack would significantly damage FL's model utility.

Robust and reliable anonymization of chest radiographs constitutes an essential step before publishing large datasets of such for research purposes. The conventional anonymization process is carried out by obscuring personal information in the images with black boxes and removing or replacing meta-information. However, such simple measures retain biometric information in the chest radiographs, allowing patients to be re-identified by a linkage attack. Therefore, there is an urgent need to obfuscate the biometric information appearing in the images. We propose the first deep learning-based approach (PriCheXy-Net) to targetedly anonymize chest radiographs while maintaining data utility for diagnostic and machine learning purposes. Our model architecture is a composition of three independent neural networks that, when collectively used, allow for learning a deformation field that is able to impede patient re-identification. Quantitative results on the ChestX-ray14 dataset show a reduction of patient re-identification from 81.8% to 57.7% (AUC) after re-training with little impact on the abnormality classification performance. This indicates the ability to preserve underlying abnormality patterns while increasing patient privacy. Lastly, we compare our proposed anonymization approach with two other obfuscation-based methods (Privacy-Net, DP-Pix) and demonstrate the superiority of our method towards resolving the privacy-utility trade-off for chest radiographs.

Despite recent progress in enhancing the privacy of federated learning (FL) via differential privacy (DP), the trade-off of DP between privacy protection and performance is still underexplored for real-world medical scenario. In this paper, we propose to optimize the trade-off under the context of client-level DP, which focuses on privacy during communications. However, FL for medical imaging involves typically much fewer participants (hospitals) than other domains (e.g., mobile devices), thus ensuring clients be differentially private is much more challenging. To tackle this problem, we propose an adaptive intermediary strategy to improve performance without harming privacy. Specifically, we theoretically find splitting clients into sub-clients, which serve as intermediaries between hospitals and the server, can mitigate the noises introduced by DP without harming privacy. Our proposed approach is empirically evaluated on both classification and segmentation tasks using two public datasets, and its effectiveness is demonstrated with significant performance improvements and comprehensive analytical studies. Code is available at: //github.com/med-air/Client-DP-FL.

The proximal Galerkin finite element method is a high-order, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free-boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper begins with a derivation of the latent variable proximal point (LVPP) method: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive (Bayesian) barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.

The cyber-threat landscape has evolved tremendously in recent years, with new threat variants emerging daily, and large-scale coordinated campaigns becoming more prevalent. In this study, we propose CELEST (CollaborativE LEarning for Scalable Threat detection), a federated machine learning framework for global threat detection over HTTP, which is one of the most commonly used protocols for malware dissemination and communication. CELEST leverages federated learning in order to collaboratively train a global model across multiple clients who keep their data locally, thus providing increased privacy and confidentiality assurances. Through a novel active learning component integrated with the federated learning technique, our system continuously discovers and learns the behavior of new, evolving, and globally-coordinated cyber threats. We show that CELEST is able to expose attacks that are largely invisible to individual organizations. For instance, in one challenging attack scenario with data exfiltration malware, the global model achieves a three-fold increase in Precision-Recall AUC compared to the local model. We deploy CELEST on two university networks and show that it is able to detect the malicious HTTP communication with high precision and low false positive rates. Furthermore, during its deployment, CELEST detected a set of previously unknown 42 malicious URLs and 20 malicious domains in one day, which were confirmed to be malicious by VirusTotal.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

北京阿比特科技有限公司