亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the recent emergence of mixed precision hardware, there has been a renewed interest in its use for solving numerical linear algebra problems fast and accurately. The solution of least squares (LS) problems $\min_x\|b-Ax\|_2$, where $A \in \mathbb{R}^{m\times n}$, arise in numerous application areas. Overdetermined standard least squares problems can be solved by using mixed precision within the iterative refinement method of Bj\"{o}rck, which transforms the least squares problem into an $(m+n)\times(m+n)$ ''augmented'' system. It has recently been shown that mixed precision GMRES-based iterative refinement can also be used, in an approach termed GMRES-LSIR. In practice, we often encounter types of least squares problems beyond standard least squares, including weighted least squares (WLS), $\min_x\|D^{1/2}(b-Ax)\|_2$, where $D^{1/2}$ is a diagonal matrix of weights. In this paper, we discuss a mixed precision FGMRES-WLSIR algorithm for solving WLS problems using two different preconditioners.

相關內容

Autonomous aerial harvesting is a highly complex problem because it requires numerous interdisciplinary algorithms to be executed on mini low-powered computing devices. Object detection is one such algorithm that is compute-hungry. In this context, we make the following contributions: (i) Fast Fruit Detector (FFD), a resource-efficient, single-stage, and postprocessing-free object detector based on our novel latent object representation (LOR) module, query assignment, and prediction strategy. FFD achieves 100FPS@FP32 precision on the latest 10W NVIDIA Jetson-NX embedded device while co-existing with other time-critical sub-systems such as control, grasping, SLAM, a major achievement of this work. (ii) a method to generate vast amounts of training data without exhaustive manual labelling of fruit images since they consist of a large number of instances, which increases the labelling cost and time. (iii) an open-source fruit detection dataset having plenty of very small-sized instances that are difficult to detect. Our exhaustive evaluations on our and MinneApple dataset show that FFD, being only a single-scale detector, is more accurate than many representative detectors, e.g. FFD is better than single-scale Faster-RCNN by 10.7AP, multi-scale Faster-RCNN by 2.3AP, and better than latest single-scale YOLO-v8 by 8AP and multi-scale YOLO-v8 by 0.3 while being considerably faster.

Tendon-driven continuum robots (TDCRs), with their flexible backbones, offer the advantage of being used for navigating complex, cluttered environments. However, to do so, they typically require multiple segments, often leading to complex actuation and control challenges. To this end, we propose a novel approach to navigate cluttered spaces effectively for a single-segment long TDCR which is the simplest topology from a mechanical point of view. Our key insight is that by leveraging contact with the environment we can achieve multiple curvatures without mechanical alterations to the robot. Specifically, we propose a search-based motion planner for a single-segment TDCR. This planner, guided by a specially designed heuristic, discretizes the configuration space and employs a best-first search. The heuristic, crucial for efficient navigation, provides an effective cost-to-go estimation while respecting the kinematic constraints of the TDCR and environmental interactions. We empirically demonstrate the efficiency of our planner-testing over 525 queries in environments with both convex and non-convex obstacles, our planner is demonstrated to have a success rate of about 80% while baselines were not able to obtain a success rate higher than 30%. The difference is attributed to our novel heuristic which is shown to significantly reduce the required search space.

The flexibility in electricity consumption and production in communities of residential buildings, including those with renewable energy sources and energy storage (a.k.a., prosumers), can effectively be utilized through the advancement of short-term demand response mechanisms. It is known that flexibility can further be increased if demand response is performed at the level of communities of prosumers, since aggregated groups can better coordinate electricity consumption. However, the effectiveness of such short-term optimization is highly dependent on the accuracy of electricity load forecasts both for each building as well as for the whole community. Structural variations in the electricity load profile can be associated with different exogenous factors, such as weather conditions, calendar information and day of the week, as well as user behavior. In this paper, we review a wide range of electricity load forecasting techniques, that can provide significant assistance in optimizing load consumption in prosumer communities. We present and test artificial intelligence (AI) powered short-term load forecasting methodologies that operate with black-box time series models, such as Facebook's Prophet and Long Short-term Memory (LSTM) models; season-based SARIMA and smoothing Holt-Winters models; and empirical regression-based models that utilize domain knowledge. The integration of weather forecasts into data-driven time series forecasts is also tested. Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.

Scene text recognition is a rapidly developing field that faces numerous challenges due to the complexity and diversity of scene text, including complex backgrounds, diverse fonts, flexible arrangements, and accidental occlusions. In this paper, we propose a novel approach called Class-Aware Mask-guided feature refinement (CAM) to address these challenges. Our approach introduces canonical class-aware glyph masks generated from a standard font to effectively suppress background and text style noise, thereby enhancing feature discrimination. Additionally, we design a feature alignment and fusion module to incorporate the canonical mask guidance for further feature refinement for text recognition. By enhancing the alignment between the canonical mask feature and the text feature, the module ensures more effective fusion, ultimately leading to improved recognition performance. We first evaluate CAM on six standard text recognition benchmarks to demonstrate its effectiveness. Furthermore, CAM exhibits superiority over the state-of-the-art method by an average performance gain of 4.1% across six more challenging datasets, despite utilizing a smaller model size. Our study highlights the importance of incorporating canonical mask guidance and aligned feature refinement techniques for robust scene text recognition. The code is available at //github.com/MelosY/CAM.

Autoscaling is a technology to automatically scale the resources provided to their applications without human intervention to guarantee runtime Quality of Service (QoS) while saving costs. However, user-facing cloud applications serve dynamic workloads that often exhibit variable and contain bursts, posing challenges to autoscaling for maintaining QoS within Service-Level Objectives (SLOs). Conservative strategies risk over-provisioning, while aggressive ones may cause SLO violations, making it more challenging to design effective autoscaling. This paper introduces BAScaler, a Burst-Aware Autoscaling framework for containerized cloud services or applications under complex workloads, combining multi-level machine learning (ML) techniques to mitigate SLO violations while saving costs. BAScaler incorporates a novel prediction-based burst detection mechanism that distinguishes between predictable periodic workload spikes and actual bursts. When bursts are detected, BAScaler appropriately overestimates them and allocates resources accordingly to address the rapid growth in resource demand. On the other hand, BAScaler employs reinforcement learning to rectify potential inaccuracies in resource estimation, enabling more precise resource allocation during non-bursts. Experiments across ten real-world workloads demonstrate BAScaler's effectiveness, achieving a 57% average reduction in SLO violations and cutting resource costs by 10% compared to other prominent methods.

Due to its optimal complexity, the multigrid (MG) method is one of the most popular approaches for solving large-scale linear systems arising from the discretization of partial differential equations. However, the parallel implementation of standard MG methods, which are inherently multiplicative, suffers from increasing communication complexity. In such cases, the additive variants of MG methods provide a good alternative due to their inherently parallel nature, although they exhibit slower convergence. This work combines the additive multigrid method with the multipreconditioned conjugate gradient (MPCG) method. In the proposed approach, the MPCG method employs the corrections from the different levels of the MG hierarchy as separate preconditioned search directions. In this approach, the MPCG method updates the current iterate by using the linear combination of the preconditioned search directions, where the optimal coefficients for the linear combination are computed by exploiting the energy norm minimization of the CG method. The idea behind our approach is to combine the $A$-conjugacy of the search directions of the MPCG method and the quasi $H_1$-orthogonality of the corrections from the MG hierarchy. In the numerical section, we study the performance of the proposed method compared to the standard additive and multiplicative MG methods used as preconditioners for the CG method.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司