亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A recently developed measure-theoretic framework solves a stochastic inverse problem (SIP) for models where uncertainties in model output data are predominantly due to aleatoric (i.e., irreducible) uncertainties in model inputs (i.e., parameters). The subsequent inferential target is a distribution on parameters. Another type of inverse problem is to quantify uncertainties in estimates of "true" parameter values under the assumption that such uncertainties should be reduced as more data are incorporated into the problem, i.e., the uncertainty is considered epistemic. A major contribution of this work is the formulation and solution of such a parameter identification problem (PIP) within the measure-theoretic framework developed for the SIP. The approach is novel in that it utilizes a solution to a stochastic forward problem (SFP) to update an initial density only in the parameter directions informed by the model output data. In other words, this method performs "selective regularization" only in the parameter directions not informed by data. The solution is defined by a maximal updated density (MUD) point where the updated density defines the measure-theoretic solution to the PIP. Another significant contribution of this work is the full theory of existence and uniqueness of MUD points for linear maps with Gaussian distributions. Data-constructed Quantity of Interest (QoI) maps are also presented and analyzed for solving the PIP within this measure-theoretic framework as a means of reducing uncertainties in the MUD estimate. We conclude with a demonstration of the general applicability of the method on two problems involving either spatial or temporal data for estimating uncertain model parameters.

相關內容

Marine controlled-source electromagnetic (CSEM) method has proved its potential in detecting highly resistive hydrocarbon bearing formations. A novel frequency domain CSEM inversion approach using fictitious wave domain time stepping modelling is presented. Using Lagrangian-based adjoint state method, the inversion gradient with respect to resistivity can be computed by the product between the forward and adjoint fields. Simulation of the adjoint field using the same modelling engine is challenging as it requires time domain adjoint source time functions while only a few discrete frequencies of the data residual are available for the inversion. A regularized linear inverse problem is formulated in order to estimate a long time series from very few frequency samples. It can then be solved using linear optimization technique, yielding a matrix-free implementation. Instead of computing adjoint source time function one by one at each receiver location, a basis function implementation has been developed such that the inverse problem can be solved only once and reused every time to construct all time-domain adjoint sources. The method allows computing all frequencies of the EM fields in one go without heavy memory and computational overhead, making efficient 3D CSEM inversion feasible. Numerical examples are employed to demonstrate the application of our method.

Motivated by hiring pipelines, we study three selection and ordering problems in which applicants for a finite set of positions must be interviewed or made offers to. There is a finite time budget for interviewing or making offers, and a stochastic realization after each decision, leading to computationally-challenging problems. In the first problem, we study sequential interviewing and show that a computationally-tractable, non-adaptive policy that must make offers immediately after interviewing is approximately optimal, assuming offerees always accept their offers. In the second problem, we assume that applicants have already been interviewed but only accept offers with some probability; we develop a computationally-tractable policy that makes offers for the different positions in parallel, which can be used even if positions are heterogeneous and is approximately optimal relative to a policy that can make the same amount of offers not in parallel. In the third problem, we introduce a model where the hiring firm is tightly time constrained and must send all offers simultaneously in a single time step, with the possibility of hiring over capacity at a cost; we provide nearly-tight bounds for the performance of practically motivated value-ordered policies. All in all, our paper takes a unified approach to three different hiring problems, based on linear programming. Our results in the first two problems generalize and improve the guarantees from Purohit et al. (2019) that were between 1/8 and 1/2 to new guarantees that are at least 1-1/e. We also numerically compare three different settings of making offers to candidates (sequentially, in parallel, or simultaneously), providing insight on when a firm should favor each one.

In the usual Bayesian setting, a full probabilistic model is required to link the data and parameters, and the form of this model and the inference and prediction mechanisms are specified via de Finetti's representation. In general, such a formulation is not robust to model mis-specification of its component parts. An alternative approach is to draw inference based on loss functions, where the quantity of interest is defined as a minimizer of some expected loss, and to construct posterior distributions based on the loss-based formulation; this strategy underpins the construction of the Gibbs posterior. We develop a Bayesian non-parametric approach; specifically, we generalize the Bayesian bootstrap, and specify a Dirichlet process model for the distribution of the observables. We implement this using direct prior-to-posterior calculations, but also using predictive sampling. We also study the assessment of posterior validity for non-standard Bayesian calculations, and provide an efficient way to calibrate the scaling parameter in the Gibbs posterior so that it can achieve the desired coverage rate. We show that the developed non-standard Bayesian updating procedures yield valid posterior distributions in terms of consistency and asymptotic normality under model mis-specification. Simulation studies show that the proposed methods can recover the true value of the parameter efficiently and achieve frequentist coverage even when the sample size is small. Finally, we apply our methods to evaluate the causal impact of speed cameras on traffic collisions in England.

Transport maps can ease the sampling of distributions with non-trivial geometries by transforming them into distributions that are easier to handle. The potential of this approach has risen with the development of Normalizing Flows (NF) which are maps parameterized with deep neural networks trained to push a reference distribution towards a target. NF-enhanced samplers recently proposed blend (Markov chain) Monte Carlo methods with either (i) proposal draws from the flow or (ii) a flow-based reparametrization. In both cases, the quality of the learned transport conditions performance. The present work clarifies for the first time the relative strengths and weaknesses of these two approaches. Our study concludes that multimodal targets can reliability be handled with flow-based proposals up to moderately high dimensions. In contrast, methods relying on reparametrization struggle with multimodality but are more robust otherwise in high-dimensional settings and under poor training. To further illustrate the influence of target-proposal adequacy, we also derive a new quantitative bound for the mixing time of the Independent Metropolis-Hastings sampler.

Suppose we are given access to $n$ independent samples from distribution $\mu$ and we wish to output one of them with the goal of making the output distributed as close as possible to a target distribution $\nu$. In this work we show that the optimal total variation distance as a function of $n$ is given by $\tilde\Theta(\frac{D}{f'(n)})$ over the class of all pairs $\nu,\mu$ with a bounded $f$-divergence $D_f(\nu\|\mu)\leq D$. Previously, this question was studied only for the case when the Radon-Nikodym derivative of $\nu$ with respect to $\mu$ is uniformly bounded. We then consider an application in the seemingly very different field of smoothed online learning, where we show that recent results on the minimax regret and the regret of oracle-efficient algorithms still hold even under relaxed constraints on the adversary (to have bounded $f$-divergence, as opposed to bounded Radon-Nikodym derivative). Finally, we also study efficacy of importance sampling for mean estimates uniform over a function class and compare importance sampling with rejection sampling.

We consider the differentially private estimation of multiple quantiles (MQ) of a distribution from a dataset, a key building block in modern data analysis. We apply the recent non-smoothed Inverse Sensitivity (IS) mechanism to this specific problem. We establish that the resulting method is closely related to the recently published ad hoc algorithm JointExp. In particular, they share the same computational complexity and a similar efficiency. We prove the statistical consistency of these two algorithms for continuous distributions. Furthermore, we demonstrate both theoretically and empirically that this method suffers from an important lack of performance in the case of peaked distributions, which can degrade up to a potentially catastrophic impact in the presence of atoms. Its smoothed version (i.e. by applying a max kernel to its output density) would solve this problem, but remains an open challenge to implement. As a proxy, we propose a simple and numerically efficient method called Heuristically Smoothed JointExp (HSJointExp), which is endowed with performance guarantees for a broad class of distributions and achieves results that are orders of magnitude better on problematic datasets.

Motivated by a real-world application, we model and solve a complex staff scheduling problem. Tasks are to be assigned to workers for supervision. Multiple tasks can be covered in parallel by a single worker, with worker shifts being flexible within availabilities. Each worker has a different skill set, enabling them to cover different tasks. Tasks require assignment according to priority and skill requirements. The objective is to maximize the number of assigned tasks weighted by their priorities, while minimizing assignment penalties. We develop an adaptive large neighborhood search (ALNS) algorithm, relying on tailored destroy and repair operators. It is tested on benchmark instances derived from real-world data and compared to optimal results obtained by means of a commercial MIP-solver. Furthermore, we analyze the impact of considering three additional alternative objective functions. When applied to large-scale company data, the developed ALNS outperforms the previously applied solution approach.

Most works on multi-agent reinforcement learning focus on scenarios where the state of the environment is fully observable. In this work, we consider a cooperative policy evaluation task in which agents are not assumed to observe the environment state directly. Instead, agents can only have access to noisy observations and to belief vectors. It is well-known that finding global posterior distributions under multi-agent settings is generally NP-hard. As a remedy, we propose a fully decentralized belief forming strategy that relies on individual updates and on localized interactions over a communication network. In addition to the exchange of the beliefs, agents exploit the communication network by exchanging value function parameter estimates as well. We analytically show that the proposed strategy allows information to diffuse over the network, which in turn allows the agents' parameters to have a bounded difference with a centralized baseline. A multi-sensor target tracking application is considered in the simulations.

Parallel-in-time integration has been the focus of intensive research efforts over the past two decades due to the advent of massively parallel computer architectures and the scaling limits of purely spatial parallelization. Various iterative parallel-in-time (PinT) algorithms have been proposed, like Parareal, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods have been described using different notations, and the convergence estimates that are available are difficult to compare. We describe Parareal, PFASST, MGRIT and STMG for the Dahlquist model problem using a common notation and give precise convergence estimates using generating functions. This allows us, for the first time, to directly compare their convergence. We prove that all four methods eventually converge super-linearly, and also compare them numerically. The generating function framework provides further opportunities to explore and analyze existing and new methods.

Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference, playing a crucial role in optimal treatment allocation, generalizability, subgroup effects, and more. Many flexible methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a nonparametric model where distributional components are Holder-smooth, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. More specifically, our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods; it is shown to be minimax optimal under a condition on how accurately the covariate distribution is estimated. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid. We conclude with some discussion of a few remaining open problems.

北京阿比特科技有限公司