亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predictive maintenance is a well studied collection of techniques that aims to prolong the life of a mechanical system by using artificial intelligence and machine learning to predict the optimal time to perform maintenance. The methods allow maintainers of systems and hardware to reduce financial and time costs of upkeep. As these methods are adopted for more serious and potentially life-threatening applications, the human operators need trust the predictive system. This attracts the field of Explainable AI (XAI) to introduce explainability and interpretability into the predictive system. XAI brings methods to the field of predictive maintenance that can amplify trust in the users while maintaining well-performing systems. This survey on explainable predictive maintenance (XPM) discusses and presents the current methods of XAI as applied to predictive maintenance while following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. We categorize the different XPM methods into groups that follow the XAI literature. Additionally, we include current challenges and a discussion on future research directions in XPM.

相關內容

Recent studies have uncovered intriguing phenomena in deep learning, such as grokking, double descent, and emergent abilities in large language models, which challenge human intuition and are crucial for a deeper understanding of neural models. In this paper, we present a comprehensive framework that provides a unified view of these three phenomena, focusing on the competition between memorization and generalization circuits. This approach, initially employed to explain grokking, is extended in our work to encompass a wider range of model sizes and training data volumes. Our framework delineates four distinct training dynamics, each depending on varying combinations of model size and training data quantity. Utilizing this framework, we provide a detailed analysis of the double descent phenomenon and propose two verifiable predictions regarding its occurrence, both substantiated by our experimental results. Moreover, we expand our framework to the multi-task learning paradigm, demonstrating how algorithm tasks can be turned into emergent abilities. This offers a novel perspective to understand emergent abilities in Large Language Models.

Selecting appropriate sensors and actuators is a pivotal aspect of design and engineering, particularly in projects involving interactive systems. This article introduces the Design Thinking Based Iterative Sensor and Actuator Selection Flow, a structured decision-making approach aimed at streamlining this essential, yet often complex task. Created to accommodate individuals with diverse levels of technical expertise, our approach is uniquely suited for interdisciplinary teams of designers and engineers. Through the application of the flow to four real-world case studies, we highlight its broad applicability and demonstrate its efficacy in expediting project timelines and enhancing resource utilization. Our work lays a foundation for a more streamlined and user-centered process in selecting sensors and actuators, significantly benefiting the practice of interactive system design. This contribution serves as a seminal foundation for future research, offering significant contributions to both academic inquiry and practical applications across various industries. While the focus of the flow is on streamlining the selection process rather than on in-depth technical considerations, which are beyond the scope of this study, it provides a comprehensive guide for efficient and informed decision-making in the realm of interactive system design.

Recent embedding-based methods have achieved great successes in exploiting entity alignment from knowledge graph (KG) embeddings of multiple modalities. In this paper, we study embedding-based entity alignment (EEA) from a perspective of generative models. We show that EEA shares similarities with typical generative models and prove the effectiveness of the recently developed generative adversarial network (GAN)-based EEA methods theoretically. We then reveal that their incomplete objective limits the capacity on both entity alignment and entity synthesis (i.e., generating new entities). We mitigate this problem by introducing a generative EEA (GEEA) framework with the proposed mutual variational autoencoder (M-VAE) as the generative model. M-VAE enables entity conversion between KGs and generation of new entities from random noise vectors. We demonstrate the power of GEEA with theoretical analysis and empirical experiments on both entity alignment and entity synthesis tasks.

This work contributes to the expanding research on the applicability of LLMs in social sciences by examining the performance of GPT-3.5 Turbo, GPT-4, and Flan-T5 models in detecting framing bias in news headlines through zero-shot, few-shot, and explainable prompting methods. A key insight from our evaluation is the notable efficacy of explainable prompting in enhancing the reliability of these models, highlighting the importance of explainable settings for social science research on framing bias. GPT-4, in particular, demonstrated enhanced performance in few-shot scenarios when presented with a range of relevant, in-domain examples. FLAN-T5's poor performance indicates that smaller models may require additional task-specific fine-tuning for identifying framing bias detection. Our study also found that models, particularly GPT-4, often misinterpret emotional language as an indicator of framing bias, underscoring the challenge of distinguishing between reporting genuine emotional expression and intentionally use framing bias in news headlines. We further evaluated the models on two subsets of headlines where the presence or absence of framing bias was either clear-cut or more contested, with the results suggesting that these models' can be useful in flagging potential annotation inaccuracies within existing or new datasets. Finally, the study evaluates the models in real-world conditions ("in the wild"), moving beyond the initial dataset focused on U.S. Gun Violence, assessing the models' performance on framed headlines covering a broad range of topics.

Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep generative modelling is a class of techniques that train deep neural networks to model the distribution of training samples. Research has fragmented into various interconnected approaches, each of which making trade-offs including run-time, diversity, and architectural restrictions. In particular, this compendium covers energy-based models, variational autoencoders, generative adversarial networks, autoregressive models, normalizing flows, in addition to numerous hybrid approaches. These techniques are drawn under a single cohesive framework, comparing and contrasting to explain the premises behind each, while reviewing current state-of-the-art advances and implementations.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司