Patient specific brain mesh generation from MRI can be a time consuming task and require manual corrections, e.g., for meshing the ventricular system or defining subdomains. To address this issue, we consider an image registration approach. The idea is to use the registration of an input magnetic resonance image (MRI) to a respective target in order to obtain a new mesh from a high-quality template mesh. To obtain the transformation, we solve an optimization problem that is constrained by a linear hyperbolic transport equation. We use a higher-order discontinuous Galerkin finite element method for discretization and show that, under a restrictive assumption, the numerical upwind scheme can be derived from the continuous weak formulation of the transport equation. We present a numerical implementation that builds on the established finite element packages FEniCS and dolfin-adjoint. To demonstrate the efficacy of the proposed approach, numerical results for the registration of an input to a target MRI of two distinct individuals are presented. Moreover, it is shown that the registration transforms a manually crafted input mesh into a new mesh for the target subject whilst preserving mesh quality. Challenges of the algorithm with the complex cortical folding structure are discussed.
In multi-agent reinforcement learning, the use of a global objective is a powerful tool for incentivising cooperation. Unfortunately, it is not sample-efficient to train individual agents with a global reward, because it does not necessarily correlate with an agent's individual actions. This problem can be solved by factorising the global value function into local value functions. Early work in this domain performed factorisation by conditioning local value functions purely on local information. Recently, it has been shown that providing both local information and an encoding of the global state can promote cooperative behaviour. In this paper we propose QGNN, the first value factorisation method to use a graph neural network (GNN) based model. The multi-layer message passing architecture of QGNN provides more representational complexity than models in prior work, allowing it to produce a more effective factorisation. QGNN also introduces a permutation invariant mixer which is able to match the performance of other methods, even with significantly fewer parameters. We evaluate our method against several baselines, including QMIX-Att, GraphMIX, QMIX, VDN, and hybrid architectures. Our experiments include Starcraft, the standard benchmark for credit assignment; Estimate Game, a custom environment that explicitly models inter-agent dependencies; and Coalition Structure Generation, a foundational problem with real-world applications. The results show that QGNN outperforms state-of-the-art value factorisation baselines consistently.
We present a space-time ultra-weak discontinuous Galerkin discretization of the linear Schr\"odinger equation with variable potential. The proposed method is well-posed and quasi-optimal in mesh-dependent norms for very general discrete spaces. Optimal $h$-convergence error estimates are derived for the method when test and trial spaces are chosen either as piecewise polynomials, or as a novel quasi-Trefftz polynomial space. The latter allows for a substantial reduction of the number of degrees of freedom and admits piecewise-smooth potentials. Several numerical experiments validate the accuracy and advantages of the proposed method.
Convolutional neural networks (CNNs) have recently proven their excellent ability to segment 2D cardiac ultrasound images. However, the majority of attempts to perform full-sequence segmentation of cardiac ultrasound videos either rely on models trained only on keyframe images or fail to maintain the topology over time. To address these issues, in this work, we consider segmentation of ultrasound video as a registration estimation problem and present a novel method for diffeomorphic image registration using neural ordinary differential equations (Neural ODE). In particular, we consider the registration field vector field between frames as a continuous trajectory ODE. The estimated registration field is then applied to the segmentation mask of the first frame to obtain a segment for the whole cardiac cycle. The proposed method, Echo-ODE, introduces several key improvements compared to the previous state-of-the-art. Firstly, by solving a continuous ODE, the proposed method achieves smoother segmentation, preserving the topology of segmentation maps over the whole sequence (Hausdorff distance: 3.7-4.4). Secondly, it maintains temporal consistency between frames without explicitly optimizing for temporal consistency attributes, achieving temporal consistency in 91% of the videos in the dataset. Lastly, the proposed method is able to maintain the clinical accuracy of the segmentation maps (MAE of the LVEF: 2.7-3.1). The results show that our method surpasses the previous state-of-the-art in multiple aspects, demonstrating the importance of spatial-temporal data processing for the implementation of Neural ODEs in medical imaging applications. These findings open up new research directions for solving echocardiography segmentation tasks.
Despite the growing interest in parallel-in-time methods as an approach to accelerate numerical simulations in atmospheric modelling, improving their stability and convergence remains a substantial challenge for their application to operational models. In this work, we study the temporal parallelization of the shallow water equations on the rotating sphere combined with time-stepping schemes commonly used in atmospheric modelling due to their stability properties, namely an Eulerian implicit-explicit (IMEX) method and a semi-Lagrangian semi-implicit method (SL-SI-SETTLS). The main goal is to investigate the performance of parallel-in-time methods, namely Parareal and Multigrid Reduction in Time (MGRIT), when these well-established schemes are used on the coarse discretization levels and provide insights on how they can be improved for better performance. We begin by performing an analytical stability study of Parareal and MGRIT applied to a linearized ordinary differential equation depending on the choice of coarse scheme. Next, we perform numerical simulations of two standard tests to evaluate the stability, convergence and speedup provided by the parallel-in-time methods compared to a fine reference solution computed serially. We also conduct a detailed investigation on the influence of artificial viscosity and hyperviscosity approaches, applied on the coarse discretization levels, on the performance of the temporal parallelization. Both the analytical stability study and the numerical simulations indicate a poorer stability behaviour when SL-SI-SETTLS is used on the coarse levels, compared to the IMEX scheme. With the IMEX scheme, a better trade-off between convergence, stability and speedup compared to serial simulations can be obtained under proper parameters and artificial viscosity choices, opening the perspective of the potential competitiveness for realistic models.
Reliable probabilistic primality tests are fundamental in public-key cryptography. In adversarial scenarios, a composite with a high probability of passing a specific primality test could be chosen. In such cases, we need worst-case error estimates for the test. However, in many scenarios the numbers are randomly chosen and thus have significantly smaller error probability. Therefore, we are interested in average case error estimates. In this paper, we establish such bounds for the strong Lucas primality test, as only worst-case, but no average case error bounds, are currently available. This allows us to use this test with more confidence. We examine an algorithm that draws odd $k$-bit integers uniformly and independently, runs $t$ independent iterations of the strong Lucas test with randomly chosen parameters, and outputs the first number that passes all $t$ consecutive rounds. We attain numerical upper bounds on the probability on returing a composite. Furthermore, we consider a modified version of this algorithm that excludes integers divisible by small primes, resulting in improved bounds. Additionally, we classify the numbers that contribute most to our estimate.
We present high-order, finite element-based Second Moment Methods (SMMs) for solving radiation transport problems in two spatial dimensions. We leverage the close connection between the Variable Eddington Factor (VEF) method and SMM to convert existing discretizations of the VEF moment system to discretizations of the SMM moment system. The moment discretizations are coupled to a high-order Discontinuous Galerkin discretization of the Discrete Ordinates transport equations. We show that the resulting methods achieve high-order accuracy on high-order (curved) meshes, preserve the thick diffusion limit, and are effective on a challenging multi-material problem both in outer fixed-point iterations and in inner preconditioned iterative solver iterations for the discrete moment systems. We also present parallel scaling results and provide direct comparisons to the VEF algorithms the SMM algorithms were derived from.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.