Address-Event-Representation (AER) is a spike-routing protocol that allows the scaling of neuromorphic and spiking neural network (SNN) architectures to a size that is comparable to that of digital neural network architectures. However, in conventional neuromorphic architectures, the AER protocol and, in general, any virtual interconnect plays only a passive role in computation, i.e., only for routing spikes and events. In this paper, we show how causal temporal primitives like delay, triggering, and sorting inherent in the AER protocol itself can be exploited for scalable neuromorphic computing using our proposed technique called Time-to-Event Margin Propagation (TEMP). The proposed TEMP-based AER architecture is fully asynchronous and relies on interconnect delays for memory and computing as opposed to conventional and local multiply-and-accumulate (MAC) operations. We show that the time-based encoding in the TEMP neural network produces a spatio-temporal representation that can encode a large number of discriminatory patterns. As a proof-of-concept, we show that a trained TEMP-based convolutional neural network (CNN) can demonstrate an accuracy greater than 99% on the MNIST dataset. Overall, our work is a biologically inspired computing paradigm that brings forth a new dimension of research to the field of neuromorphic computing.
With rapid progress in deep learning, neural networks have been widely used in scientific research and engineering applications as surrogate models. Despite the great success of neural networks in fitting complex systems, two major challenges still remain: i) the lack of generalization on different problems/datasets, and ii) the demand for large amounts of simulation data that are computationally expensive. To resolve these challenges, we propose the differentiable \mf (DMF) model, which leverages neural architecture search (NAS) to automatically search the suitable model architecture for different problems, and transfer learning to transfer the learned knowledge from low-fidelity (fast but inaccurate) data to high-fidelity (slow but accurate) model. Novel and latest machine learning techniques such as hyperparameters search and alternate learning are used to improve the efficiency and robustness of DMF. As a result, DMF can efficiently learn the physics simulations with only a few high-fidelity training samples, and outperform the state-of-the-art methods with a significant margin (with up to 58$\%$ improvement in RMSE) based on a variety of synthetic and practical benchmark problems.
Diffusion models have been remarkably successful in data synthesis. Such successes have also driven diffusion models to apply to sensitive data, such as human face data, but this might bring about severe privacy concerns. In this work, we systematically present the first privacy study about property inference attacks against diffusion models, in which adversaries aim to extract sensitive global properties of the training set from a diffusion model, such as the proportion of the training data for certain sensitive properties. Specifically, we consider the most practical attack scenario: adversaries are only allowed to obtain synthetic data. Under this realistic scenario, we evaluate the property inference attacks on different types of samplers and diffusion models. A broad range of evaluations shows that various diffusion models and their samplers are all vulnerable to property inference attacks. Furthermore, one case study on off-the-shelf pre-trained diffusion models also demonstrates the effectiveness of the attack in practice. Finally, we propose a new model-agnostic plug-in method PriSampler to mitigate the property inference of diffusion models. PriSampler can be directly applied to well-trained diffusion models and support both stochastic and deterministic sampling. Extensive experiments illustrate the effectiveness of our defense and it makes adversaries infer the proportion of properties as close as random guesses. PriSampler also shows its significantly superior performance to diffusion models trained with differential privacy on both model utility and defense performance.
Mixture-of-Expert (MoE) models have obtained state-of-the-art performance in Neural Machine Translation (NMT) tasks. Existing works in MoE mostly consider a homogeneous design where the same number of experts of the same size are placed uniformly throughout the network. Furthermore, existing MoE works do not consider computational constraints (e.g., FLOPs, latency) to guide their design. To this end, we develop AutoMoE -- a framework for designing heterogeneous MoE's under computational constraints. AutoMoE leverages Neural Architecture Search (NAS) to obtain efficient sparse MoE sub-transformers with 4x inference speedup (CPU) and FLOPs reduction over manually designed Transformers, with parity in BLEU score over dense Transformer and within 1 BLEU point of MoE SwitchTransformer, on aggregate over benchmark datasets for NMT. Heterogeneous search space with dense and sparsely activated Transformer modules (e.g., how many experts? where to place them? what should be their sizes?) allows for adaptive compute -- where different amounts of computations are used for different tokens in the input. Adaptivity comes naturally from routing decisions which send tokens to experts of different sizes. AutoMoE code, data, and trained models are available at //aka.ms/AutoMoE.
The use of Shap scores has become widespread in Explainable AI. However, their computation is in general intractable, in particular when done with a black-box classifier, such as neural network. Recent research has unveiled classes of open-box Boolean Circuit classifiers for which Shap can be computed efficiently. We show how to transform binary neural networks into those circuits for efficient Shap computation. We use logic-based knowledge compilation techniques. The performance gain is huge, as we show in the light of our experiments.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.
Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relation between LPA and GCN has not yet been investigated. Here we study the relationship between LPA and GCN in terms of two aspects: (1) feature/label smoothing where we analyze how the feature/label of one node is spread over its neighbors; And, (2) feature/label influence of how much the initial feature/label of one node influences the final feature/label of another node. Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved classification performance. Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models. In a number of experiments on real-world graphs, our model shows superiority over state-of-the-art GCN-based methods in terms of node classification accuracy.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.
The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.