Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental defect generation mechanisms. These processes are typically accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, must be predicted with high accuracy. The present work utilizes a diffuse interface model based on a continuum surface flux (CSF) description on the interfaces to study dimensionally reduced thermal two-phase problems representing PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature rate in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled CSF approach compared to classical CSF, drastically reducing computational costs. Finally, we showcased the general applicability of the parameter-scaled CSF to a three-dimensional simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.
With the expansion of operational scale of supermarkets in China, the vegetable market has grown considerably. The decision-making related to procurement costs and allocation quantities of vegetables has become a pivotal factor in determining the profitability of supermarkets. This paper analyzes the relationship between pricing and allocation faced by supermarkets in vegetable operations. Optimization algorithms are employed to determine replenishment and pricing strategies. Linear regression is utilized to model the historical data of various products, establishing the relationship between sale prices and sales volumes for 61 products. By integrating historical data on vegetable costs with time information based on the 24 solar terms, a cost prediction model is trained using TCN-Attention. The Topis evaluation model identifies the 32 most market-demanded products. A genetic algorithm is then used to search for the globally optimized vegetable product allocation-pricing decision.
We propose Stein-type estimators for zero-inflated Bell regression models by incorporating information on model parameters. These estimators combine the advantages of unrestricted and restricted estimators. We derive the asymptotic distributional properties, including bias and mean squared error, for the proposed shrinkage estimators. Monte Carlo simulations demonstrate the superior performance of our shrinkage estimators across various scenarios. Furthermore, we apply the proposed estimators to analyze a real dataset, showcasing their practical utility.
We establish a theoretical framework of the particle relaxation method for uniform particle generation of Smoothed Particle Hydrodynamics. We achieve this by reformulating the particle relaxation as an optimization problem. The objective function is an integral difference between discrete particle-based and smoothed-analytical volume fractions. The analysis demonstrates that the particle relaxation method in the domain interior is essentially equivalent to employing a gradient descent approach to solve this optimization problem, and we can extend such an equivalence to the bounded domain by introducing a proper boundary term. Additionally, each periodic particle distribution has a spatially uniform particle volume, denoted as characteristic volume. The relaxed particle distribution has the largest characteristic volume, and the kernel cut-off radius determines this volume. This insight enables us to control the relaxed particle distribution by selecting the target kernel cut-off radius for a given kernel function.
We consider minimizers of the N-particle interaction potential energy and briefly review numerical methods used to calculate them. We consider simple pair potentials which are attractive at short distances and repulsive at long distances, focusing on examples which are sums of two powers. The range of powers we look at includes the well-known case of the Lennard-Jones potential, but we are also interested in less singular potentials which are relevant in collective behavior models. We report on results using the software GMIN developed by Wales and collaborators for problems in chemistry. For all cases, this algorithm gives good candidates for the minimizers for relatively low values of the particle number N. This is well-known for potentials similar to Lennard-Jones, but not for the range which is of interest in collective behavior. Standard minimization procedures have been used in the literature in this range, but they are likely to yield stationary states which are not minimizers. We illustrate numerically some properties of the minimizers in 2D, such as lattice structure, Wulff shapes, and the continuous large-N limit for locally integrable (that is, less singular) potentials.
A detailed numerical study of solutions to the Serre-Green-Naghdi (SGN) equations in 2D with vanishing curl of the velocity field is presented. The transverse stability of line solitary waves, 1D solitary waves being exact solutions of the 2D equations independent of the second variable, is established numerically. The study of localized initial data as well as crossing 1D solitary waves does not give an indication of existence of stable structures in SGN solutions localized in two spatial dimensions. For the numerical experiments, an approach based on a Fourier spectral method with a Krylov subspace technique is applied.
This paper presents a method for thematic agreement assessment of geospatial data products of different semantics and spatial granularities, which may be affected by spatial offsets between test and reference data. The proposed method uses a multi-scale framework allowing for a probabilistic evaluation whether thematic disagreement between datasets is induced by spatial offsets due to different nature of the datasets or not. We test our method using real-estate derived settlement locations and remote-sensing derived building footprint data.
The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever either these spaces or the two bilinear forms involving the multiplier are distinct, the saddle point problem is asymmetric. The three inf-sup conditions to be satisfied by the product spaces stipulated in work on the subject, in order to guarantee well-posedness, are well known. However, the material encountered in the literature addressing the approximation of this class of problems left room for improvement and clarifications. After making a brief review of the existing contributions to the topic that justifies such an assertion, in this paper we set up finer global error bounds for the pair primal variable-multiplier solving an asymmetric saddle point problem. Besides well-posedness, the three constants in the aforementioned inf-sup conditions are identified as all that is needed for determining the stability constant appearing therein, whose expression is exhibited. As a complement, refined error bounds depending only on these three constants are given for both unknowns separately.
Radon is a carcinogenic, radioactive gas that can accumulate indoors. Therefore, accurate knowledge of indoor radon concentration is crucial for assessing radon-related health effects or identifying radon-prone areas. Indoor radon concentration at the national scale is usually estimated on the basis of extensive measurement campaigns. However, characteristics of the sample often differ from the characteristics of the population due to the large number of relevant factors that control the indoor radon concentration such as the availability of geogenic radon or floor level. Furthermore, the sample size usually does not allow estimation with high spatial resolution. We propose a model-based approach that allows a more realistic estimation of indoor radon distribution with a higher spatial resolution than a purely data-based approach. A two-stage modelling approach was applied: 1) a quantile regression forest using environmental and building data as predictors was applied to estimate the probability distribution function of indoor radon for each floor level of each residential building in Germany; (2) a probabilistic Monte Carlo sampling technique enabled the combination and population weighting of floor-level predictions. In this way, the uncertainty of the individual predictions is effectively propagated into the estimate of variability at the aggregated level. The results show an approximate lognormal distribution with an arithmetic mean of 63 Bq/m3, a geometric mean of 41 Bq/m3 and a 95 %ile of 180 Bq/m3. The exceedance probability for 100 Bq/m3 and 300 Bq/m3 are 12.5 % (10.5 million people) and 2.2 % (1.9 million people), respectively.
We derive sharp-interface models for one-dimensional brittle fracture via the inverse-deformation approach. Methods of Gamma-convergence are employed to obtain the singular limits of previously proposed models. The latter feature a local, non-convex stored energy of inverse strain, augmented by small interfacial energy, formulated in terms of the inverse-strain gradient. They predict spontaneous fracture with exact crack-opening discontinuities, without the use of damage (phase) fields or pre-existing cracks; crack faces are endowed with a thin layer of surface energy. The models obtained herewith inherit the same properties, except that surface energy is now concentrated at the crack faces. Accordingly, we construct energy-minimizing configurations. For a composite bar with a breakable layer, our results predict a pattern of equally spaced cracks whose number is given as an increasing function of applied load.
Tactile sensing in mobile robots remains under-explored, mainly due to challenges related to sensor integration and the complexities of distributed sensing. In this work, we present a tactile sensing architecture for mobile robots based on wheel-mounted acoustic waveguides. Our sensor architecture enables tactile sensing along the entire circumference of a wheel with a single active component: an off-the-shelf acoustic rangefinder. We present findings showing that our sensor, mounted on the wheel of a mobile robot, is capable of discriminating between different terrains, detecting and classifying obstacles with different geometries, and performing collision detection via contact localization. We also present a comparison between our sensor and sensors traditionally used in mobile robots, and point to the potential for sensor fusion approaches that leverage the unique capabilities of our tactile sensing architecture. Our findings demonstrate that autonomous mobile robots can further leverage our sensor architecture for diverse mapping tasks requiring knowledge of terrain material, surface topology, and underlying structure.