Multivariate Time Series (MTS) forecasting involves modeling temporal dependencies within historical records. Transformers have demonstrated remarkable performance in MTS forecasting due to their capability to capture long-term dependencies. However, prior work has been confined to modeling temporal dependencies at either a fixed scale or multiple scales that exponentially increase (most with base 2). This limitation hinders their effectiveness in capturing diverse seasonalities, such as hourly and daily patterns. In this paper, we introduce a dimension invariant embedding technique that captures short-term temporal dependencies and projects MTS data into a higher-dimensional space, while preserving the dimensions of time steps and variables in MTS data. Furthermore, we present a novel Multi-scale Transformer Pyramid Network (MTPNet), specifically designed to effectively capture temporal dependencies at multiple unconstrained scales. The predictions are inferred from multi-scale latent representations obtained from transformers at various scales. Extensive experiments on nine benchmark datasets demonstrate that the proposed MTPNet outperforms recent state-of-the-art methods.
Using a vocabulary that is shared across languages is common practice in Multilingual Neural Machine Translation (MNMT). In addition to its simple design, shared tokens play an important role in positive knowledge transfer, assuming that shared tokens refer to similar meanings across languages. However, when word overlap is small, especially due to different writing systems, transfer is inhibited. In this paper, we define word-level information transfer pathways via word equivalence classes and rely on graph networks to fuse word embeddings across languages. Our experiments demonstrate the advantages of our approach: 1) embeddings of words with similar meanings are better aligned across languages, 2) our method achieves consistent BLEU improvements of up to 2.3 points for high- and low-resource MNMT, and 3) less than 1.0\% additional trainable parameters are required with a limited increase in computational costs, while inference time remains identical to the baseline. We release the codebase to the community.
Large Language Models (LLMs) have demonstrated their ability to collaborate effectively with humans in real-world scenarios. However, LLMs are apt to generate hallucinations, i.e., makeup incorrect text and unverified information, which can cause significant damage when deployed for mission-critical tasks. In this paper, we propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion. To facilitate future studies and assess different methods, we construct a hallucination detection benchmark, which is generated by ChatGPT and annotated by human annotators. Contrasting previous studies of zero-resource hallucination detection, our method and benchmark concentrate on passage-level detection instead of sentence-level. We empirically evaluate our method and existing zero-resource detection methods on different domains of benchmark to explore the implicit relation between hallucination and training data. Furthermore, we manually analyze some hallucination cases that LLM failed to capture, revealing the shared limitation of zero-resource methods.
Panoptic Scene Graph Generation (PSG) involves the detection of objects and the prediction of their corresponding relationships (predicates). However, the presence of biased predicate annotations poses a significant challenge for PSG models, as it hinders their ability to establish a clear decision boundary among different predicates. This issue substantially impedes the practical utility and real-world applicability of PSG models. To address the intrinsic bias above, we propose a novel framework to infer potentially biased annotations by measuring the predicate prediction risks within each subject-object pair (domain), and adaptively transfer the biased annotations to consistent ones by learning invariant predicate representation embeddings. Experiments show that our method significantly improves the performance of benchmark models, achieving a new state-of-the-art performance, and shows great generalization and effectiveness on PSG dataset.
The estimation of origin-destination (OD) matrices is a crucial aspect of Intelligent Transport Systems (ITS). It involves adjusting an initial OD matrix by regressing the current observations like traffic counts of road sections (e.g., using least squares). However, the OD estimation problem lacks sufficient constraints and is mathematically underdetermined. To alleviate this problem, some researchers incorporate a prior OD matrix as a target in the regression to provide more structural constraints. However, this approach is highly dependent on the existing prior matrix, which may be outdated. Others add structural constraints through sensor data, such as vehicle trajectory and speed, which can reflect more current structural constraints in real-time. Our proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization. This approach combines the advantages of both deep learning and numerical optimization algorithms. The neural network(NN) learns to infer structural constraints from probe traffic flows, eliminating dependence on prior information and providing real-time performance. Additionally, due to the generalization capability of NN, this method is economical in engineering. We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset. Subsequently, we verified the stability of our method on real traffic data. Our experiments provided confirmation of the benefits of combining NN and numerical optimization.
In recent years, Large Language Models (LLMs) have demonstrated remarkable potential across various downstream tasks. LLM-integrated frameworks, which serve as the essential infrastructure, have given rise to many LLM-integrated web apps. However, some of these frameworks suffer from Remote Code Execution (RCE) vulnerabilities, allowing attackers to execute arbitrary code on apps' servers remotely via prompt injections. Despite the severity of these vulnerabilities, no existing work has been conducted for a systematic investigation of them. This leaves a great challenge on how to detect vulnerabilities in frameworks as well as LLM-integrated apps in real-world scenarios. To fill this gap, we present two novel strategies, including 1) a static analysis-based tool called LLMSmith to scan the source code of the framework to detect potential RCE vulnerabilities and 2) a prompt-based automated testing approach to verify the vulnerability in LLM-integrated web apps. We discovered 13 vulnerabilities in 6 frameworks, including 12 RCE vulnerabilities and 1 arbitrary file read/write vulnerability. 11 of them are confirmed by the framework developers, resulting in the assignment of 7 CVE IDs. After testing 51 apps, we found vulnerabilities in 17 apps, 16 of which are vulnerable to RCE and 1 to SQL injection. We responsibly reported all 17 issues to the corresponding developers and received acknowledgments. Furthermore, we amplify the attack impact beyond achieving RCE by allowing attackers to exploit other app users (e.g. app responses hijacking, user API key leakage) without direct interaction between the attacker and the victim. Lastly, we propose some mitigating strategies for improving the security awareness of both framework and app developers, helping them to mitigate these risks effectively.
Recent advances in text-to-speech, particularly those based on Graph Neural Networks (GNNs), have significantly improved the expressiveness of short-form synthetic speech. However, generating human-parity long-form speech with high dynamic prosodic variations is still challenging. To address this problem, we expand the capabilities of GNNs with a hierarchical prosody modeling approach, named HiGNN-TTS. Specifically, we add a virtual global node in the graph to strengthen the interconnection of word nodes and introduce a contextual attention mechanism to broaden the prosody modeling scope of GNNs from intra-sentence to inter-sentence. Additionally, we perform hierarchical supervision from acoustic prosody on each node of the graph to capture the prosodic variations with a high dynamic range. Ablation studies show the effectiveness of HiGNN-TTS in learning hierarchical prosody. Both objective and subjective evaluations demonstrate that HiGNN-TTS significantly improves the naturalness and expressiveness of long-form synthetic speech.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal