亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Individualized treatment rules (ITRs) have been widely applied in many fields such as precision medicine and personalized marketing. Beyond the extensive studies on ITR for binary or multiple treatments, there is considerable interest in applying combination treatments. This paper introduces a novel ITR estimation method for combination treatments incorporating interaction effects among treatments. Specifically, we propose the generalized $\psi$-loss as a non-convex surrogate in the residual weighted learning framework, offering desirable statistical and computational properties. Statistically, the minimizer of the proposed surrogate loss is Fisher-consistent with the optimal decision rules, incorporating interaction effects at any intensity level - a significant improvement over existing methods. Computationally, the proposed method applies the difference-of-convex algorithm for efficient computation. Through simulation studies and real-world data applications, we demonstrate the superior performance of the proposed method in recommending combination treatments.

相關內容

In recent years, text summarization methods have attracted much attention again thanks to the researches on neural network models. Most of the current text summarization methods based on neural network models are supervised methods which need large-scale datasets. However, large-scale datasets are difficult to obtain in practical applications. In this paper, we model the task of extractive text summarization methods from the perspective of Information Theory, and then describe the unsupervised extractive methods with a uniform framework. To improve the feature distribution and to decrease the mutual information of summarization sentences, we propose a new sentence extraction strategy which can be applied to existing unsupervised extractive methods. Experiments are carried out on different datasets, and results show that our strategy is indeed effective and in line with expectations.

Efficient implementation of massive multiple-input-multiple-output (MIMO) transceivers is essential for the next-generation wireless networks. To reduce the high computational complexity of the massive MIMO transceiver, in this paper, we propose a new massive MIMO architecture using finite-precision arithmetic. First, we conduct the rounding error analysis and derive the lower bound of the achievable rate for single-input-multiple-output (SIMO) using maximal ratio combining (MRC) and multiple-input-single-output (MISO) systems using maximal ratio transmission (MRT) with finite-precision arithmetic. Then, considering the multi-user scenario, the rounding error analysis of zero-forcing (ZF) detection and precoding is derived by using the normal equations (NE) method. The corresponding lower bounds of the achievable sum rate are also derived and asymptotic analyses are presented. Built upon insights from these analyses and lower bounds, we propose a mixed-precision architecture for massive MIMO systems to offset performance gaps due to finite-precision arithmetic. The corresponding analysis of rounding errors and computational costs is obtained. Simulation results validate the derived bounds and underscore the superiority of the proposed mixed-precision architecture to the conventional structure.

Recent studies have made remarkable progress in histopathology classification. Based on current successes, contemporary works proposed to further upgrade the model towards a more generalizable and robust direction through incrementally learning from the sequentially delivered domains. Unlike previous parameter isolation based approaches that usually demand massive computation resources during model updating, we present a memory-efficient prompt tuning framework to cultivate model generalization potential in economical memory cost. For each incoming domain, we reuse the existing parameters of the initial classification model and attach lightweight trainable prompts into it for customized tuning. Considering the domain heterogeneity, we perform decoupled prompt tuning, where we adopt a domain-specific prompt for each domain to independently investigate its distinctive characteristics, and one domain-invariant prompt shared across all domains to continually explore the common content embedding throughout time. All domain-specific prompts will be appended to the prompt bank and isolated from further changes to prevent forgetting the distinctive features of early-seen domains. While the domain-invariant prompt will be passed on and iteratively evolve by style-augmented prompt refining to improve model generalization capability over time. In specific, we construct a graph with existing prompts and build a style-augmented graph attention network to guide the domain-invariant prompt exploring the overlapped latent embedding among all delivered domains for more domain generic representations. We have extensively evaluated our framework with two histopathology tasks, i.e., breast cancer metastasis classification and epithelium-stroma tissue classification, where our approach yielded superior performance and memory efficiency over the competing methods.

The subject of simulating internal organs is a valuable and important topic of research to multiple fields from medical analysis to education and training. This paper presents a solution that utilizes a graphical technique in combination with a Stochastic method for tuning an active physics-based model. We generate responsive interactive organ animations with regional properties (i.e., areas of the model oscillating with different harmonic frequencies) to reproduce and capture real-world characteristics. Our method builds upon biological and physical discoveries to procedurally generate internally controlled rhythmic motions but also enable the solution to be interactive and adaptive. We briefly review deformation models for medical simulations and investigate the impediments to combining 'computergraphics' representations with biomechanical models. Finally, we present a lightweight solution that is scalable and able to procedurally generate large organ animations. In particular, simplified geometric representations of deformable structures that use periodic coupled forces to drive themselves.

The increasing complexity of medical imaging data underscores the need for advanced anomaly detection methods to automatically identify diverse pathologies. Current methods face challenges in capturing the broad spectrum of anomalies, often limiting their use to specific lesion types in brain scans. To address this challenge, we introduce a novel unsupervised approach, termed \textit{Reversed Auto-Encoders (RA)}, designed to create realistic pseudo-healthy reconstructions that enable the detection of a wider range of pathologies. We evaluate the proposed method across various imaging modalities, including magnetic resonance imaging (MRI) of the brain, pediatric wrist X-ray, and chest X-ray, and demonstrate superior performance in detecting anomalies compared to existing state-of-the-art methods. Our unsupervised anomaly detection approach may enhance diagnostic accuracy in medical imaging by identifying a broader range of unknown pathologies. Our code is publicly available at: \url{//github.com/ci-ber/RA}.

Unsupervised anomaly detection has gained significant attention in the field of medical imaging due to its capability of relieving the costly pixel-level annotation. To achieve this, modern approaches usually utilize generative models to produce healthy references of the diseased images and then identify the abnormalities by comparing the healthy references and the original diseased images. Recently, diffusion models have exhibited promising potential for unsupervised anomaly detection in medical images for their good mode coverage and high sample quality. However, the intrinsic characteristics of the medical images, e.g. the low contrast, and the intricate anatomical structure of the human body make the reconstruction challenging. Besides, the global information of medical images often remain underutilized. To address these two issues, we propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images. The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions. Extensive experiments on data of tumors and multiple sclerosis lesions demonstrate the effectiveness of our method.

Researchers have shown significant correlations among segmented objects in various medical imaging modalities and disease related pathologies. Several studies showed that using hand crafted features for disease prediction neglects the immense possibility to use latent features from deep learning (DL) models which may reduce the overall accuracy of differential diagnosis. However, directly using classification or segmentation models on medical to learn latent features opt out robust feature selection and may lead to overfitting. To fill this gap, we propose a novel feature selection technique using the latent space of a segmentation model that can aid diagnosis. We evaluated our method in differentiating a rare cardiac disease: Takotsubo Syndrome (TTS) from the ST elevation myocardial infarction (STEMI) using echocardiogram videos (echo). TTS can mimic clinical features of STEMI in echo and extremely hard to distinguish. Our approach shows promising results in differential diagnosis of TTS with 82% diagnosis accuracy beating the previous state-of-the-art (SOTA) approach. Moreover, the robust feature selection technique using LASSO algorithm shows great potential in reducing the redundant features and creates a robust pipeline for short- and long-term disease prognoses in the downstream analysis.

Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.

Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司