亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Prescriptive process monitoring methods seek to improve the performance of a process by selectively triggering interventions at runtime (e.g., offering a discount to a customer) to increase the probability of a desired case outcome (e.g., a customer making a purchase). The backbone of a prescriptive process monitoring method is an intervention policy, which determines for which cases and when an intervention should be executed. Existing methods in this field rely on predictive models to define intervention policies; specifically, they consider policies that trigger an intervention when the estimated probability of a negative outcome exceeds a threshold. However, the probabilities computed by a predictive model may come with a high level of uncertainty (low confidence), leading to unnecessary interventions and, thus, wasted effort. This waste is particularly problematic when the resources available to execute interventions are limited. To tackle this shortcoming, this paper proposes an approach to extend existing prescriptive process monitoring methods with so-called conformal predictions, i.e., predictions with confidence guarantees. An empirical evaluation using real-life public datasets shows that conformal predictions enhance the net gain of prescriptive process monitoring methods under limited resources.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Statistical wisdom suggests that very complex models, interpolating training data, will be poor at predicting unseen examples.Yet, this aphorism has been recently challenged by the identification of benign overfitting regimes, specially studied in the case of parametric models: generalization capabilities may be preserved despite model high complexity.While it is widely known that fully-grown decision trees interpolate and, in turn, have bad predictive performances, the same behavior is yet to be analyzed for Random Forests (RF).In this paper, we study the trade-off between interpolation and consistency for several types of RF algorithms. Theoretically, we prove that interpolation regimes and consistency cannot be achieved simultaneously for several non-adaptive RF.Since adaptivity seems to be the cornerstone to bring together interpolation and consistency, we study interpolating Median RF which are proved to be consistent in the interpolating regime. This is the first result conciliating interpolation and consistency for RF, highlighting that the averaging effect introduced by feature randomization is a key mechanism, sufficient to ensure the consistency in the interpolation regime and beyond.Numerical experiments show that Breiman's RF are consistent while exactly interpolating, when no bootstrap step is involved.We theoretically control the size of the interpolation area, which converges fast enough to zero, giving a necessary condition for exact interpolation and consistency to occur in conjunction.

Today's online platforms rely heavily on recommendation systems to serve content to their users; social media is a prime example. In turn, recommendation systems largely depend on artificial intelligence algorithms to decide who gets to see what. While the content social media platforms deliver is as varied as the users who engage with them, it has been shown that platforms can contribute to serious harm to individuals, groups and societies. Studies have suggested that these negative impacts range from worsening an individual's mental health to driving society-wide polarisation capable of putting democracies at risk. To better safeguard people from these harms, the European Union's Digital Services Act (DSA) requires platforms, especially those with large numbers of users, to make their algorithmic systems more transparent and follow due diligence obligations. These requirements constitute an important legislative step towards mitigating the systemic risks posed by online platforms. However, the DSA lacks concrete guidelines to operationalise a viable audit process that would allow auditors to hold these platforms accountable. This void could foster the spread of 'audit-washing', that is, platforms exploiting audits to legitimise their practices and neglect responsibility. To fill this gap, we propose a risk-scenario-based audit process. We explain in detail what audits and assessments of recommender systems according to the DSA should look like. Our approach also considers the evolving nature of platforms and emphasises the observability of their recommender systems' components. The resulting audit facilitates internal (among audits of the same system at different moments in time) and external comparability (among audits of different platforms) while also affording the evaluation of mitigation measures implemented by the platforms themselves.

Off-policy evaluation is critical in a number of applications where new policies need to be evaluated offline before online deployment. Most existing methods focus on the expected return, define the target parameter through averaging and provide a point estimator only. In this paper, we develop a novel procedure to produce reliable interval estimators for a target policy's return starting from any initial state. Our proposal accounts for the variability of the return around its expectation, focuses on the individual effect and offers valid uncertainty quantification. Our main idea lies in designing a pseudo policy that generates subsamples as if they were sampled from the target policy so that existing conformal prediction algorithms are applicable to prediction interval construction. Our methods are justified by theories, synthetic data and real data from short-video platforms.

Software is a great enabler for a number of projects that otherwise would be impossible to perform. Such projects include Space Exploration, Weather Modeling, Genome Projects, and many others. It is critical that software aiding these projects does what it is expected to do. In the terminology of software engineering, software that corresponds to requirements, that is does what it is expected to do is called correct. Checking the correctness of software has been the focus of a great deal of research in the area of software engineering. Practitioners in the field in which software is applied quite often do not assign much value to checking this correctness. Yet, as software systems become larger, potentially combined with distributed subsystems written by different authors, such verification becomes even more important. Concurrent, distributed systems are prone to dangerous errors due to different speeds of execution of their components such as deadlocks, race conditions, or violation of project-specific properties. This project describes an application of a static analysis method called model checking to verification of a distributed system for the Bioinformatics process. In it, we evaluate the efficiency of the model checking approach to the verification of combined processes with an increasing number of concurrently executed steps. We show that our experimental results correspond to analytically derived expectations. We also highlight the importance of static analysis to combined processes in the Bioinformatics field.

For real-world applications of machine learning (ML), it is essential that models make predictions based on well-generalizing features rather than spurious correlations in the data. The identification of such spurious correlations, also known as shortcuts, is a challenging problem and has so far been scarcely addressed. In this work, we present a novel approach to detect shortcuts in image and audio datasets by leveraging variational autoencoders (VAEs). The disentanglement of features in the latent space of VAEs allows us to discover correlations in datasets and semi-automatically evaluate them for ML shortcuts. We demonstrate the applicability of our method on several real-world datasets and identify shortcuts that have not been discovered before. Based on these findings, we also investigate the construction of shortcut adversarial examples.

Resistance distance has been studied extensively in the past years, with the majority of previous studies devoted to undirected networks, in spite of the fact that various realistic networks are directed. Although several generalizations of resistance distance on directed graphs have been proposed, they either have no physical interpretation or are not a metric. In this paper, we first extend the definition of resistance distance to strongly connected directed graphs based on random walks and show that the two-node resistance distance on directed graphs is a metric. Then, we introduce the Laplacian matrix for directed graphs that subsumes the Laplacian matrix of undirected graphs as a particular case and use its pseudoinverse to express the two-node resistance distance, and many other relevant quantities derived from resistance distances. Moreover, we define the resistance distance between a vertex and a vertex group on directed graphs and further define a problem of optimally selecting a group of fixed number of nodes, such that their resistance distance is minimized. Since this combinatorial optimization problem is NP-hard, we present a greedy algorithm with a proved approximation ratio, and conduct experiments on model and realistic networks to validate the performance of this approximation algorithm.

Multiple Instance Learning (MIL) is a weakly supervised learning paradigm that is becoming increasingly popular because it requires less labeling effort than fully supervised methods. This is especially interesting for areas where the creation of large annotated datasets remains challenging, as in medicine. Although recent deep learning MIL approaches have obtained state-of-the-art results, they are fully deterministic and do not provide uncertainty estimations for the predictions. In this work, we introduce the Attention Gaussian Process (AGP) model, a novel probabilistic attention mechanism based on Gaussian Processes for deep MIL. AGP provides accurate bag-level predictions as well as instance-level explainability, and can be trained end-to-end. Moreover, its probabilistic nature guarantees robustness to overfitting on small datasets and uncertainty estimations for the predictions. The latter is especially important in medical applications, where decisions have a direct impact on the patient's health. The proposed model is validated experimentally as follows. First, its behavior is illustrated in two synthetic MIL experiments based on the well-known MNIST and CIFAR-10 datasets, respectively. Then, it is evaluated in three different real-world cancer detection experiments. AGP outperforms state-of-the-art MIL approaches, including deterministic deep learning ones. It shows a strong performance even on a small dataset with less than 100 labels and generalizes better than competing methods on an external test set. Moreover, we experimentally show that predictive uncertainty correlates with the risk of wrong predictions, and therefore it is a good indicator of reliability in practice. Our code is publicly available.

We answer an open complexity question by Hofman, Lasota, Mayr, Totzke (LMCS 2016) for simulation preorder on the class of succinct one-counter nets (i.e., one-counter automata with no zero tests where counter increments and decrements are integers written in binary); the problem was known to be PSPACE-hard and in EXPSPACE. We show that all relations between bisimulation equivalence and simulation preorder are EXPSPACE-hard for these nets; simulation preorder is thus EXPSPACE-complete. The result is proven by a reduction from reachability games whose EXPSPACE-completeness in the case of succinct one-counter nets was shown by Hunter (RP 2015), by using other results. We also provide a direct self-contained EXPSPACE-completeness proof for a special case of such reachability games, namely for a modification of countdown games that were shown EXPTIME-complete by Jurdzinski, Sproston, Laroussinie (LMCS 2008); in our modification the initial counter value is not given but is freely chosen by the first player. We also present an alternative proof for the upper bound by Hofman et al. In particular, we give a new simplified proof of the belt theorem that yields a simple graphic presentation of simulation preorder on (non-succinct) one-counter nets and leads to a polynomial-space algorithm (which is trivially extended to an exponential-space algorithm for succinct one-counter nets).

Deep neural networks have emerged as the workhorse for a large section of robotics and control applications, especially as models for dynamical systems. Such data-driven models are in turn used for designing and verifying autonomous systems. This is particularly useful in modeling medical systems where data can be leveraged to individualize treatment. In safety-critical applications, it is important that the data-driven model is conformant to established knowledge from the natural sciences. Such knowledge is often available or can often be distilled into a (possibly black-box) model $M$. For instance, the unicycle model (which encodes Newton's laws) for an F1 racing car. In this light, we consider the following problem - given a model $M$ and state transition dataset, we wish to best approximate the system model while being bounded distance away from $M$. We propose a method to guarantee this conformance. Our first step is to distill the dataset into few representative samples called memories, using the idea of a growing neural gas. Next, using these memories we partition the state space into disjoint subsets and compute bounds that should be respected by the neural network, when the input is drawn from a particular subset. This serves as a symbolic wrapper for guaranteed conformance. We argue theoretically that this only leads to bounded increase in approximation error; which can be controlled by increasing the number of memories. We experimentally show that on three case studies (Car Model, Drones, and Artificial Pancreas), our constrained neurosymbolic models conform to specified $M$ models (each encoding various constraints) with order-of-magnitude improvements compared to the augmented Lagrangian and vanilla training methods. Our code can be found at //github.com/kaustubhsridhar/Constrained_Models

Voltage fluctuations are common disturbances in power grids. Initially, it is necessary to selectively identify individual sources of voltage fluctuations to take actions to minimize the effects of voltage fluctuations. Selective identification of disturbing loads is possible by using a signal chain consisting of demodulation, decomposition, and assessment of the propagation of component signals. The accuracy of such an approach is closely related to the applied decomposition method. The paper presents a new method for decomposition by approximation with pulse waves. The proposed method allows for an correct identification of selected parameters, that is, the frequency of changes in the operating state of individual sources of voltage fluctuations and the amplitude of voltage changes caused by them. The article presents results from numerical simulation studies and laboratory experimental studies, based on which the estimation errors of the indicated parameters were determined by the proposed decomposition method and other empirical decomposition methods available in the literature. The real states that occur in power grids were recreated in the research. The metrological interpretation of the results obtained from the numerical simulation and experimental research is discussed.

北京阿比特科技有限公司