We present ObjectMatch, a semantic and object-centric camera pose estimation for RGB-D SLAM pipelines. Modern camera pose estimators rely on direct correspondences of overlapping regions between frames; however, they cannot align camera frames with little or no overlap. In this work, we propose to leverage indirect correspondences obtained via semantic object identification. For instance, when an object is seen from the front in one frame and from the back in another frame, we can provide additional pose constraints through canonical object correspondences. We first propose a neural network to predict such correspondences on a per-pixel level, which we then combine in our energy formulation with state-of-the-art keypoint matching solved with a joint Gauss-Newton optimization. In a pairwise setting, our method improves registration recall of state-of-the-art feature matching from 77% to 87% overall and from 21% to 52% in pairs with 10% or less inter-frame overlap. In registering RGB-D sequences, our method outperforms cutting-edge SLAM baselines in challenging, low frame-rate scenarios, achieving more than 35% reduction in trajectory error in multiple scenes.
Representing a scene and its constituent objects from raw sensory data is a core ability for enabling robots to interact with their environment. In this paper, we propose a novel approach for scene understanding, leveraging a hierarchical object-centric generative model that enables an agent to infer object category and pose in an allocentric reference frame using active inference, a neuro-inspired framework for action and perception. For evaluating the behavior of an active vision agent, we also propose a new benchmark where, given a target viewpoint of a particular object, the agent needs to find the best matching viewpoint given a workspace with randomly positioned objects in 3D. We demonstrate that our active inference agent is able to balance epistemic foraging and goal-driven behavior, and outperforms both supervised and reinforcement learning baselines by a large margin.
The Fisher information matrix (FIM) is a key quantity in statistics as it is required for example for evaluating asymptotic precisions of parameter estimates, for computing test statistics or asymptotic distributions in statistical testing, for evaluating post model selection inference results or optimality criteria in experimental designs. However its exact computation is often not trivial. In particular in many latent variable models, it is intricated due to the presence of unobserved variables. Therefore the observed FIM is usually considered in this context to estimate the FIM. Several methods have been proposed to approximate the observed FIM when it can not be evaluated analytically. Among the most frequently used approaches are Monte-Carlo methods or iterative algorithms derived from the missing information principle. All these methods require to compute second derivatives of the complete data log-likelihood which leads to some disadvantages from a computational point of view. In this paper, we present a new approach to estimate the FIM in latent variable model. The advantage of our method is that only the first derivatives of the log-likelihood is needed, contrary to other approaches based on the observed FIM. Indeed we consider the empirical estimate of the covariance matrix of the score. We prove that this estimate of the Fisher information matrix is unbiased, consistent and asymptotically Gaussian. Moreover we highlight that none of both estimates is better than the other in terms of asymptotic covariance matrix. When the proposed estimate can not be directly analytically evaluated, we present a stochastic approximation estimation algorithm to compute it. This algorithm provides this estimate of the FIM as a by-product of the parameter estimates. We emphasize that the proposed algorithm only requires to compute the first derivatives of the complete data log-likelihood with respect to the parameters. We prove that the estimation algorithm is consistent and asymptotically Gaussian when the number of iterations goes to infinity. We evaluate the finite sample size properties of the proposed estimate and of the observed FIM through simulation studies in linear mixed effects models and mixture models. We also investigate the convergence properties of the estimation algorithm in non linear mixed effects models. We compare the performances of the proposed algorithm to those of other existing methods.
Recent interest in point cloud analysis has led rapid progress in designing deep learning methods for 3D models. However, state-of-the-art models are not robust to rotations, which remains an unknown prior to real applications and harms the model performance. In this work, we introduce a novel Patch-wise Rotation-invariant network (PaRot), which achieves rotation invariance via feature disentanglement and produces consistent predictions for samples with arbitrary rotations. Specifically, we design a siamese training module which disentangles rotation invariance and equivariance from patches defined over different scales, e.g., the local geometry and global shape, via a pair of rotations. However, our disentangled invariant feature loses the intrinsic pose information of each patch. To solve this problem, we propose a rotation-invariant geometric relation to restore the relative pose with equivariant information for patches defined over different scales. Utilising the pose information, we propose a hierarchical module which implements intra-scale and inter-scale feature aggregation for 3D shape learning. Moreover, we introduce a pose-aware feature propagation process with the rotation-invariant relative pose information embedded. Experiments show that our disentanglement module extracts high-quality rotation-robust features and the proposed lightweight model achieves competitive results in rotated 3D object classification and part segmentation tasks. Our project page is released at: //patchrot.github.io/.
Multiple Object Tracking (MOT) focuses on modeling the relationship of detected objects among consecutive frames and merge them into different trajectories. MOT remains a challenging task as noisy and confusing detection results often hinder the final performance. Furthermore, most existing research are focusing on improving detection algorithms and association strategies. As such, we propose a novel framework that can effectively predict and mask-out the noisy and confusing detection results before associating the objects into trajectories. In particular, we formulate such "bad" detection results as a sequence of events and adopt the spatio-temporal point process}to model such events. Traditionally, the occurrence rate in a point process is characterized by an explicitly defined intensity function, which depends on the prior knowledge of some specific tasks. Thus, designing a proper model is expensive and time-consuming, with also limited ability to generalize well. To tackle this problem, we adopt the convolutional recurrent neural network (conv-RNN) to instantiate the point process, where its intensity function is automatically modeled by the training data. Furthermore, we show that our method captures both temporal and spatial evolution, which is essential in modeling events for MOT. Experimental results demonstrate notable improvements in addressing noisy and confusing detection results in MOT datasets. An improved state-of-the-art performance is achieved by incorporating our baseline MOT algorithm with the spatio-temporal point process model.
Many real-world systems can be described by mathematical formulas that are human-comprehensible, easy to analyze and can be helpful in explaining the system's behaviour. Symbolic regression is a method that generates nonlinear models from data in the form of analytic expressions. Historically, symbolic regression has been predominantly realized using genetic programming, a method that iteratively evolves a population of candidate solutions that are sampled by genetic operators crossover and mutation. This gradient-free evolutionary approach suffers from several deficiencies: it does not scale well with the number of variables and samples in the training data, models tend to grow in size and complexity without an adequate accuracy gain, and it is hard to fine-tune the inner model coefficients using just genetic operators. Recently, neural networks have been applied to learn the whole analytic formula, i.e., its structure as well as the coefficients, by means of gradient-based optimization algorithms. We propose a novel neural network-based symbolic regression method that constructs physically plausible models based on limited training data and prior knowledge about the system. The method employs an adaptive weighting scheme to effectively deal with multiple loss function terms and an epoch-wise learning process to reduce the chance of getting stuck in poor local optima. Furthermore, we propose a parameter-free method for choosing the model with the best interpolation and extrapolation performance out of all models generated through the whole learning process. We experimentally evaluate the approach on the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the anti-lock braking system. The results clearly show the potential of the method to find sparse and accurate models that comply with the prior knowledge provided.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.