Bootstrap inference is a powerful tool for obtaining robust inference for quantiles and difference-in-quantiles estimators. The computationally intensive nature of bootstrap inference has made it infeasible in large-scale experiments. In this paper, the theoretical properties of the Poisson bootstrap algorithm and quantile estimators are used to derive alternative resampling-free algorithms for Poisson bootstrap inference that reduce the the computational complexity substantially without additional assumptions. The results unlock bootstrap inference for almost arbitrarily large samples. At Spotify, we can now easily calculate bootstrap confidence intervals for quantiles and difference-in-quantiles in A/B tests with hundreds of millions of observations.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
Neural memory enables fast adaptation to new tasks with just a few training samples. Existing memory models store features only from the single last layer, which does not generalize well in presence of a domain shift between training and test distributions. Rather than relying on a flat memory, we propose a hierarchical alternative that stores features at different semantic levels. We introduce a hierarchical prototype model, where each level of the prototype fetches corresponding information from the hierarchical memory. The model is endowed with the ability to flexibly rely on features at different semantic levels if the domain shift circumstances so demand. We meta-learn the model by a newly derived hierarchical variational inference framework, where hierarchical memory and prototypes are jointly optimized. To explore and exploit the importance of different semantic levels, we further propose to learn the weights associated with the prototype at each level in a data-driven way, which enables the model to adaptively choose the most generalizable features. We conduct thorough ablation studies to demonstrate the effectiveness of each component in our model. The new state-of-the-art performance on cross-domain and competitive performance on traditional few-shot classification further substantiates the benefit of hierarchical variational memory.
Anomaly detection among a large number of processes arises in many applications ranging from dynamic spectrum access to cybersecurity. In such problems one can often obtain noisy observations aggregated from a chosen subset of processes that conforms to a tree structure. The distribution of these observations, based on which the presence of anomalies is detected, may be only partially known. This gives rise to the need for a search strategy designed to account for both the sample complexity and the detection accuracy, as well as cope with statistical models that are known only up to some missing parameters. In this work we propose a sequential search strategy using two variations of the Generalized Local Likelihood Ratio statistic. Our proposed Hierarchical Dynamic Search (HDS) strategy is shown to be order-optimal with respect to the size of the search space and asymptotically optimal with respect to the detection accuracy. An explicit upper bound on the error probability of HDS is established for the finite sample regime. Extensive experiments are conducted, demonstrating the performance gains of HDS over existing methods.
Many areas of science make extensive use of computer simulators that implicitly encode likelihood functions of complex systems. Classical statistical methods are poorly suited for these so-called likelihood-free inference (LFI) settings, particularly outside asymptotic and low-dimensional regimes. Although new machine learning methods, such as normalizing flows, have revolutionized the sample efficiency and capacity of LFI methods, it remains an open question whether they produce confidence sets with correct conditional coverage for small sample sizes. This paper unifies classical statistics with modern machine learning to present (i) a practical procedure for the Neyman construction of confidence sets with finite-sample guarantees of nominal coverage, and (ii) diagnostics that estimate conditional coverage over the entire parameter space. We refer to our framework as likelihood-free frequentist inference (LF2I). Any method that defines a test statistic, like the likelihood ratio, can leverage the LF2I machinery to create valid confidence sets and diagnostics without costly Monte Carlo samples at fixed parameter settings. We study the power of two test statistics (ACORE and BFF), which, respectively, maximize versus integrate an odds function over the parameter space. Our paper discusses the benefits and challenges of LF2I, with a breakdown of the sources of errors in LF2I confidence sets.
We study qualitative properties of two-dimensional freezing cellular automata with a binary state set initialized on a random configuration. If the automaton is also monotone, the setting is equivalent to bootstrap percolation. We explore the extent to which monotonicity constrains the possible asymptotic dynamics by proving two results that do not hold in the subclass of monotone automata. First, it is undecidable whether the automaton almost surely fills the space when initialized on a Bernoulli random configuration with density $p$, for some/all $0 < p < 1$. Second, there exists an automaton whose space-filling property depends on $p$ in a non-monotone way.
This paper considers the problem of inference in cluster randomized experiments when cluster sizes are non-ignorable. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the level of the cluster; by non-ignorable cluster sizes we mean that "large" clusters and "small" clusters may be heterogeneous, and, in particular, the effects of the treatment may vary across clusters of differing sizes. In order to permit this sort of flexibility, we consider a sampling framework in which cluster sizes themselves are random. In this way, our analysis departs from earlier analyses of cluster randomized experiments in which cluster sizes are treated as non-random. We distinguish between two different parameters of interest: the equally-weighted cluster-level average treatment effect, and the size-weighted cluster-level average treatment effect. For each parameter, we provide methods for inference in an asymptotic framework where the number of clusters tends to infinity and treatment is assigned using simple random sampling. We additionally permit the experimenter to sample only a subset of the units within each cluster rather than the entire cluster and demonstrate the implications of such sampling for some commonly used estimators. A small simulation study shows the practical relevance of our theoretical results.
Representation learning enables us to automatically extract generic feature representations from a dataset to solve another machine learning task. Recently, extracted feature representations by a representation learning algorithm and a simple predictor have exhibited state-of-the-art performance on several machine learning tasks. Despite its remarkable progress, there exist various ways to evaluate representation learning algorithms depending on the application because of the flexibility of representation learning. To understand the current representation learning, we review evaluation methods of representation learning algorithms and theoretical analyses. On the basis of our evaluation survey, we also discuss the future direction of representation learning. Note that this survey is the extended version of Nozawa and Sato (2022).
Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a {\em dynamic setting}, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [HWC17]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of $(1+\epsilon)r^2$ and an update time of $O(\text{poly} (r, \log n))$, where $r$ denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of $(1+\epsilon)$ that is independent of $r$, and a similar update time of $O(\text{poly} (r, \log n))$. It is the first $(1+\epsilon)$-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [HWC17] both in terms of accuracy and efficiency.
In large scale dynamic wireless networks, the amount of overhead caused by channel estimation (CE) is becoming one of the main performance bottlenecks. This is due to the large number users whose channels should be estimated, the user mobility, and the rapid channel change caused by the usage of the high-frequency spectrum (e.g. millimeter wave). In this work, we propose a new hybrid channel estimation/prediction (CEP) scheme to reduce overhead in time-division duplex (TDD) wireless cell-free massive multiple-input-multiple-output (mMIMO) systems. The scheme proposes sending a pilot signal from each user only once in a given number (window) of coherence intervals (CIs). Then minimum mean-square error (MMSE) estimation is used to estimate the channel of this CI, while a deep neural network (DNN) is used to predict the channels of the remaining CIs in the window. The DNN exploits the temporal correlation between the consecutive CIs and the received pilot signals to improve the channel prediction accuracy. By doing so, CE overhead is reduced by at least 50 percent at the expense of negligible CE error for practical user mobility settings. Consequently, the proposed CEP scheme improves the spectral efficiency compared to the conventional MMSE CE approach, especially when the number of users is large, which is demonstrated numerically.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.