In text-to-image personalization, a timely and crucial challenge is the tendency of generated images overfitting to the biases present in the reference images. We initiate our study with a comprehensive categorization of the biases into background, nearby-object, tied-object, substance (in style re-contextualization), and pose biases. These biases manifest in the generated images due to their entanglement into the subject embedding. This undesired embedding entanglement not only results in the reflection of biases from the reference images into the generated images but also notably diminishes the alignment of the generated images with the given generation prompt. To address this challenge, we propose SID~(Selectively Informative Description), a text description strategy that deviates from the prevalent approach of only characterizing the subject's class identification. SID is generated utilizing multimodal GPT-4 and can be seamlessly integrated into optimization-based models. We present comprehensive experimental results along with analyses of cross-attention maps, subject-alignment, non-subject-disentanglement, and text-alignment.
Deep neural classifiers tend to rely on spurious correlations between spurious attributes of inputs and targets to make predictions, which could jeopardize their generalization capability. Training classifiers robust to spurious correlations typically relies on annotations of spurious correlations in data, which are often expensive to get. In this paper, we tackle an annotation-free setting and propose a self-guided spurious correlation mitigation framework. Our framework automatically constructs fine-grained training labels tailored for a classifier obtained with empirical risk minimization to improve its robustness against spurious correlations. The fine-grained training labels are formulated with different prediction behaviors of the classifier identified in a novel spuriousness embedding space. We construct the space with automatically detected conceptual attributes and a novel spuriousness metric which measures how likely a class-attribute correlation is exploited for predictions. We demonstrate that training the classifier to distinguish different prediction behaviors reduces its reliance on spurious correlations without knowing them a priori and outperforms prior methods on five real-world datasets.
News image captioning requires model to generate an informative caption rich in entities, with the news image and the associated news article. Though Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in addressing various vision-language tasks, our research finds that current MLLMs still bear limitations in handling entity information on news image captioning task. Besides, while MLLMs have the ability to process long inputs, generating high-quality news image captions still requires a trade-off between sufficiency and conciseness of textual input information. To explore the potential of MLLMs and address problems we discovered, we propose : an Entity-Aware Multimodal Alignment based approach for news image captioning. Our approach first aligns the MLLM through Balance Training Strategy with two extra alignment tasks: Entity-Aware Sentence Selection task and Entity Selection task, together with News Image Captioning task, to enhance its capability in handling multimodal entity information. The aligned MLLM will utilizes the additional entity-related information it explicitly extracts to supplement its textual input while generating news image captions. Our approach achieves better results than all previous models in CIDEr score on GoodNews dataset (72.33 -> 88.39) and NYTimes800k dataset (70.83 -> 85.61).
In subject-driven text-to-image synthesis, the synthesis process tends to be heavily influenced by the reference images provided by users, often overlooking crucial attributes detailed in the text prompt. In this work, we propose Subject-Agnostic Guidance (SAG), a simple yet effective solution to remedy the problem. We show that through constructing a subject-agnostic condition and applying our proposed dual classifier-free guidance, one could obtain outputs consistent with both the given subject and input text prompts. We validate the efficacy of our approach through both optimization-based and encoder-based methods. Additionally, we demonstrate its applicability in second-order customization methods, where an encoder-based model is fine-tuned with DreamBooth. Our approach is conceptually simple and requires only minimal code modifications, but leads to substantial quality improvements, as evidenced by our evaluations and user studies.
In the context of temporal image forensics, it is not evident that a neural network, trained on images from different time-slots (classes), exploits solely image age related features. Usually, images taken in close temporal proximity (e.g., belonging to the same age class) share some common content properties. Such content bias can be exploited by a neural network. In this work, a novel approach is proposed that evaluates the influence of image content. This approach is verified using synthetic images (where content bias can be ruled out) with an age signal embedded. Based on the proposed approach, it is shown that a deep learning approach proposed in the context of age classification is most likely highly dependent on the image content. As a possible countermeasure, two different models from the field of image steganalysis, along with three different preprocessing techniques to increase the signal-to-noise ratio (age signal to image content), are evaluated using the proposed method.
Recently, deep neural networks have been found to nearly interpolate training data but still generalize well in various applications. To help understand such a phenomenon, it has been of interest to analyze the ridge estimator and its interpolation limit in high-dimensional regression models. For this motivation, we study the ridge estimator in a rotationally sparse setting of high-dimensional linear regression, where the signal of a response is aligned with a small number, $d$, of covariates with large or spiked variances, compared with the remaining covariates with small or tail variances, \textit{after} an orthogonal transformation of the covariate vector. We establish high-probability upper and lower bounds on the out-sample and in-sample prediction errors in two distinct regimes depending on the ratio of the effective rank of tail variances over the sample size $n$. The separation of the two regimes enables us to exploit relevant concentration inequalities and derive concrete error bounds without making any oracle assumption or independent components assumption on covariate vectors. Moreover, we derive sufficient and necessary conditions which indicate that the prediction errors of ridge estimation can be of the order $O(\frac{d}{n})$ if and only if the gap between the spiked and tail variances are sufficiently large. We also compare the orders of optimal out-sample and in-sample prediction errors and find that, remarkably, the optimal out-sample prediction error may be significantly smaller than the optimal in-sample one. Finally, we present numerical experiments which empirically confirm our theoretical findings.
The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.
As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.