The relevance of the Key Information Extraction (KIE) task is increasingly important in natural language processing problems. But there are still only a few well-defined problems that serve as benchmarks for solutions in this area. To bridge this gap, we introduce two new datasets (Kleister NDA and Kleister Charity). They involve a mix of scanned and born-digital long formal English-language documents. In these datasets, an NLP system is expected to find or infer various types of entities by employing both textual and structural layout features. The Kleister Charity dataset consists of 2,788 annual financial reports of charity organizations, with 61,643 unique pages and 21,612 entities to extract. The Kleister NDA dataset has 540 Non-disclosure Agreements, with 3,229 unique pages and 2,160 entities to extract. We provide several state-of-the-art baseline systems from the KIE domain (Flair, BERT, RoBERTa, LayoutLM, LAMBERT), which show that our datasets pose a strong challenge to existing models. The best model achieved an 81.77% and an 83.57% F1-score on respectively the Kleister NDA and the Kleister Charity datasets. We share the datasets to encourage progress on more in-depth and complex information extraction tasks.
Information Extraction (IE) for semi-structured document images is often approached as a sequence tagging problem by classifying each recognized input token into one of the IOB (Inside, Outside, and Beginning) categories. However, such problem setup has two inherent limitations that (1) it cannot easily handle complex spatial relationships and (2) it is not suitable for highly structured information, which are nevertheless frequently observed in real-world document images. To tackle these issues, we first formulate the IE task as spatial dependency parsing problem that focuses on the relationship among text tokens in the documents. Under this setup, we then propose SPADE (SPAtial DEpendency parser) that models highly complex spatial relationships and an arbitrary number of information layers in the documents in an end-to-end manner. We evaluate it on various kinds of documents such as receipts, name cards, forms, and invoices, and show that it achieves a similar or better performance compared to strong baselines including BERT-based IOB taggger.
Text-to-Graph extraction aims to automatically extract information graphs consisting of mentions and types from natural language texts. Existing approaches, such as table filling and pairwise scoring, have shown impressive performance on various information extraction tasks, but they are difficult to scale to datasets with longer input texts because of their second-order space/time complexities with respect to the input length. In this work, we propose a Hybrid Span Generator (HySPA) that invertibly maps the information graph to an alternating sequence of nodes and edge types, and directly generates such sequences via a hybrid span decoder which can decode both the spans and the types recurrently in linear time and space complexities. Extensive experiments on the ACE05 dataset show that our approach also significantly outperforms state-of-the-art on the joint entity and relation extraction task.
Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.
In this paper, we present a novel method named RECON, that automatically identifies relations in a sentence (sentential relation extraction) and aligns to a knowledge graph (KG). RECON uses a graph neural network to learn representations of both the sentence as well as facts stored in a KG, improving the overall extraction quality. These facts, including entity attributes (label, alias, description, instance-of) and factual triples, have not been collectively used in the state of the art methods. We evaluate the effect of various forms of representing the KG context on the performance of RECON. The empirical evaluation on two standard relation extraction datasets shows that RECON significantly outperforms all state of the art methods on NYT Freebase and Wikidata datasets. RECON reports 87.23 F1 score (Vs 82.29 baseline) on Wikidata dataset whereas on NYT Freebase, reported values are 87.5(P@10) and 74.1(P@30) compared to the previous baseline scores of 81.3(P@10) and 63.1(P@30).
We introduce SpERT, an attention model for span-based joint entity and relation extraction. Our approach employs the pre-trained Transformer network BERT as its core. We use BERT embeddings as shared inputs for a light-weight reasoning, which features entity recognition and filtering, as well as relation classification with a localized, marker-free context representation. The model is trained on strong within-sentence negative samples, which are efficiently extracted in a single BERT pass. These aspects facilitate a search over all spans in the sentence. In ablation studies, we demonstrate the benefits of pre-training, strong negative sampling and localized context. Our model outperforms prior work by up to 5% F1 score on several datasets for joint entity and relation extraction.
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
In this paper, we propose a span based model combined with syntactic information for n-ary open information extraction. The advantage of span model is that it can leverage span level features, which is difficult in token based BIO tagging methods. We also improve the previous bootstrap method to construct training corpus. Experiments show that our model outperforms previous open information extraction systems. Our code and data are publicly available at //github.com/zhanjunlang/Span_OIE
Information Extraction (IE) refers to automatically extracting structured relation tuples from unstructured texts. Common IE solutions, including Relation Extraction (RE) and open IE systems, can hardly handle cross-sentence tuples, and are severely restricted by limited relation types as well as informal relation specifications (e.g., free-text based relation tuples). In order to overcome these weaknesses, we propose a novel IE framework named QA4IE, which leverages the flexible question answering (QA) approaches to produce high quality relation triples across sentences. Based on the framework, we develop a large IE benchmark with high quality human evaluation. This benchmark contains 293K documents, 2M golden relation triples, and 636 relation types. We compare our system with some IE baselines on our benchmark and the results show that our system achieves great improvements.
In Natural Language Processing (NLP), we often need to extract information from tree topology. Sentence structure can be represented via a dependency tree or a constituency tree structure. For this reason, a variant of LSTMs, named Tree-LSTM, was proposed to work on tree topology. In this paper, we design a generalized attention framework for both dependency and constituency trees by encoding variants of decomposable attention inside a Tree-LSTM cell. We evaluated our models on a semantic relatedness task and achieved notable results compared to Tree-LSTM based methods with no attention as well as other neural and non-neural methods and good results compared to Tree-LSTM based methods with attention.
Event extraction is of practical utility in natural language processing. In the real world, it is a common phenomenon that multiple events existing in the same sentence, where extracting them are more difficult than extracting a single event. Previous works on modeling the associations between events by sequential modeling methods suffer a lot from the low efficiency in capturing very long-range dependencies. In this paper, we propose a novel Jointly Multiple Events Extraction (JMEE) framework to jointly extract multiple event triggers and arguments by introducing syntactic shortcut arcs to enhance information flow and attention-based graph convolution networks to model graph information. The experiment results demonstrate that our proposed framework achieves competitive results compared with state-of-the-art methods.