The rapidly changing landscape of technology and industries leads to dynamic skill requirements, making it crucial for employees and employers to anticipate such shifts to maintain a competitive edge in the labor market. Existing efforts in this area either rely on domain-expert knowledge or regarding skill evolution as a simplified time series forecasting problem. However, both approaches overlook the sophisticated relationships among different skills and the inner-connection between skill demand and supply variations. In this paper, we propose a Cross-view Hierarchical Graph learning Hypernetwork (CHGH) framework for joint skill demand-supply prediction. Specifically, CHGH is an encoder-decoder network consisting of i) a cross-view graph encoder to capture the interconnection between skill demand and supply, ii) a hierarchical graph encoder to model the co-evolution of skills from a cluster-wise perspective, and iii) a conditional hyper-decoder to jointly predict demand and supply variations by incorporating historical demand-supply gaps. Extensive experiments on three real-world datasets demonstrate the superiority of the proposed framework compared to seven baselines and the effectiveness of the three modules.
Neural compression has brought tremendous progress in designing lossy compressors with good rate-distortion (RD) performance at low complexity. Thus far, neural compression design involves transforming the source to a latent vector, which is then rounded to integers and entropy coded. While this approach has been shown to be optimal in a one-shot sense on certain sources, we show that it is highly sub-optimal on i.i.d. sequences, and in fact always recovers scalar quantization of the original source sequence. We demonstrate that the sub-optimality is due to the choice of quantization scheme in the latent space, and not the transform design. By employing lattice quantization instead of scalar quantization in the latent space, we demonstrate that Lattice Transform Coding (LTC) is able to recover optimal vector quantization at various dimensions and approach the asymptotically-achievable rate-distortion function at reasonable complexity. On general vector sources, LTC improves upon standard neural compressors in one-shot coding performance. LTC also enables neural compressors that perform block coding on i.i.d. vector sources, which yields coding gain over optimal one-shot coding.
The importance of preventing microarchitectural timing side channels in security-critical applications has surged in recent years. Constant-time programming has emerged as a best-practice technique for preventing the leakage of secret information through timing. It is based on the assumption that the timing of certain basic machine instructions is independent of their respective input data. However, whether or not an instruction satisfies this data-independent timing criterion varies between individual processor microarchitectures. In this paper, we propose a novel methodology to formally verify data-oblivious behavior in hardware using standard property checking techniques. The proposed methodology is based on an inductive property that enables scalability even to complex out-of-order cores. We show that proving this inductive property is sufficient to exhaustively verify data-obliviousness at the microarchitectural level. In addition, the paper discusses several techniques that can be used to make the verification process easier and faster. We demonstrate the feasibility of the proposed methodology through case studies on several open-source designs. One case study uncovered a data-dependent timing violation in the extensively verified and highly secure IBEX RISC-V core. In addition to several hardware accelerators and in-order processors, our experiments also include RISC-V BOOM, a complex out-of-order processor, highlighting the scalability of the approach.
Developing high-performance, real-time architectures for LiDAR-based 3D object detectors is essential for the successful commercialization of autonomous vehicles. Pillar-based methods stand out as a practical choice for onboard deployment due to their computational efficiency. However, despite their efficiency, these methods can sometimes underperform compared to alternative point encoding techniques such as Voxel-encoding or PointNet++. We argue that current pillar-based methods have not sufficiently captured the fine-grained distributions of LiDAR points within each pillar structure. Consequently, there exists considerable room for improvement in pillar feature encoding. In this paper, we introduce a novel pillar encoding architecture referred to as Fine-Grained Pillar Feature Encoding (FG-PFE). FG-PFE utilizes Spatio-Temporal Virtual (STV) grids to capture the distribution of point clouds within each pillar across vertical, temporal, and horizontal dimensions. Through STV grids, points within each pillar are individually encoded using Vertical PFE (V-PFE), Temporal PFE (T-PFE), and Horizontal PFE (H-PFE). These encoded features are then aggregated through an Attentive Pillar Aggregation method. Our experiments conducted on the nuScenes dataset demonstrate that FG-PFE achieves significant performance improvements over baseline models such as PointPillar, CenterPoint-Pillar, and PillarNet, with only a minor increase in computational overhead.
Feature-distributed data, referred to data partitioned by features and stored across multiple computing nodes, are increasingly common in applications with a large number of features. This paper proposes a two-stage relaxed greedy algorithm (TSRGA) for applying multivariate linear regression to such data. The main advantage of TSRGA is that its communication complexity does not depend on the feature dimension, making it highly scalable to very large data sets. In addition, for multivariate response variables, TSRGA can be used to yield low-rank coefficient estimates. The fast convergence of TSRGA is validated by simulation experiments. Finally, we apply the proposed TSRGA in a financial application that leverages unstructured data from the 10-K reports, demonstrating its usefulness in applications with many dense large-dimensional matrices.
Many cyber-physical-human systems (CPHS) involve a human decision-maker who may receive recommendations from an artificial intelligence (AI) platform while holding the ultimate responsibility of making decisions. In such CPHS applications, the human decision-maker may depart from an optimal recommended decision and instead implement a different one for various reasons. In this letter, we develop a rigorous framework to overcome this challenge. In our framework, we consider that humans may deviate from AI recommendations as they perceive and interpret the system's state in a different way than the AI platform. We establish the structural properties of optimal recommendation strategies and develop an approximate human model (AHM) used by the AI. We provide theoretical bounds on the optimality gap that arises from an AHM and illustrate the efficacy of our results in a numerical example.
Advances in Tiny Machine Learning (TinyML) have bolstered the creation of smart industry solutions, including smart agriculture, healthcare and smart cities. Whilst related research contributes to enabling TinyML solutions on constrained hardware, there is a need to amplify real-world applications by optimising energy consumption in battery-powered systems. The work presented extends and contributes to TinyML research by optimising battery-powered image-based anomaly detection Internet of Things (IoT) systems. Whilst previous work in this area has yielded the capabilities of on-device inferencing and training, there has yet to be an investigation into optimising the management of such capabilities using machine learning approaches, such as Reinforcement Learning (RL), to improve the deployment battery life of such systems. Using modelled simulations, the battery life effects of an RL algorithm are benchmarked against static and dynamic optimisation approaches, with the foundation laid for a hardware benchmark to follow. It is shown that using RL within a TinyML-enabled IoT system to optimise the system operations, including cloud anomaly processing and on-device training, yields an improved battery life of 22.86% and 10.86% compared to static and dynamic optimisation approaches respectively. The proposed solution can be deployed to resource-constrained hardware, given its low memory footprint of 800 B, which could be further reduced. This further facilitates the real-world deployment of such systems, including key sectors such as smart agriculture.
In the rapidly evolving landscape of artificial intelligence (AI), the collaboration between human intelligence and AI systems, known as Human-AI (HAI) Teaming, has emerged as a cornerstone for advancing problem-solving and decision-making processes. The advent of Large Pre-trained Models (LPtM) has significantly transformed this landscape, offering unprecedented capabilities by leveraging vast amounts of data to understand and predict complex patterns. This paper surveys the pivotal integration of LPtMs with HAI, emphasizing how these models enhance collaborative intelligence beyond traditional approaches. It examines the synergistic potential of LPtMs in augmenting human capabilities, discussing this collaboration for AI model improvements, effective teaming, ethical considerations, and their broad applied implications in various sectors. Through this exploration, the study sheds light on the transformative impact of LPtM-enhanced HAI Teaming, providing insights for future research, policy development, and strategic implementations aimed at harnessing the full potential of this collaboration for research and societal benefit.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.