亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Soft robotic manipulators with many degrees of freedom can carry out complex tasks safely around humans. However, manufacturing of soft robotic hands with several degrees of freedom requires a complex multi-step manual process, which significantly increases their cost. We present a design of a multi-material 15 DoF robotic hand with five fingers including an opposable thumb. Our design has 15 pneumatic actuators based on a series of hollow chambers that are driven by an external pressure system. The thumb utilizes rigid joints and the palm features internal rigid structure and soft skin. The design can be directly 3D printed using a multi-material additive manufacturing process without any assembly process and therefore our hand can be manufactured for less than 300 dollars. We test the hand in conjunction with a low-cost vision-based teleoperation system on different tasks.

相關內容

Weakly supervised 3D object detection aims to learn a 3D detector with lower annotation cost, e.g., 2D labels. Unlike prior work which still relies on few accurate 3D annotations, we propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels. Specifically, we employ visual data from three perspectives to establish connections between 2D and 3D domains. First, we design a feature-level constraint to align LiDAR and image features based on object-aware regions. Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations. Finally, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data. We conduct extensive experiments on the KITTI dataset to validate the effectiveness of the proposed three constraints. Without using any 3D labels, our method achieves favorable performance against state-of-the-art approaches and is competitive with the method that uses 500-frame 3D annotations. Code and models will be made publicly available at //github.com/kuanchihhuang/VG-W3D.

Describing and analysing learner behaviour using sequential data and analysis is becoming more and more popular in Learning Analytics. Nevertheless, we found a variety of definitions of learning sequences, as well as choices regarding data aggregation and the methods implemented for analysis. Furthermore, sequences are used to study different educational settings and serve as a base for various interventions. In this literature review, the authors aim to generate an overview of these aspects to describe the current state of using sequence analysis in educational support and learning analytics. The 74 included articles were selected based on the criteria that they conduct empirical research on an educational environment using sequences of learning actions as the main focus of their analysis. The results enable us to highlight different learning tasks where sequences are analysed, identify data mapping strategies for different types of sequence actions, differentiate techniques based on purpose and scope, and identify educational interventions based on the outcomes of sequence analysis.

Ising machines have emerged as a promising solution for rapidly solving NP-complete combinatorial optimization problems, surpassing the capabilities of traditional computing methods. By efficiently determining the ground state of the Hamiltonian during the annealing process, Ising machines can effectively complement CPUs in tackling optimization challenges. To realize these Ising machines, a bi-stable oscillator is essential to emulate the atomic spins and interactions of the Ising model. This study introduces a Josephson parametric oscillator (JPO)-based tile structure, serving as a fundamental unit for scalable superconductor-based Ising machines. Leveraging the bi-stable nature of JPOs, which are superconductor-based oscillators, the proposed machine can operate at frequencies of 7.5GHz while consuming significantly less power (by three orders of magnitude) than CMOS-based systems. Furthermore, the compatibility of the proposed tile structure with the Lechner-Hauke-Zoller (LHZ) architecture ensures its viability for large-scale integration. We conducted simulations of the tile in a noisy environment to validate its functionality. We verified its operational characteristics by comparing the results with the analytical solution of its Hamiltonian model. This verification demonstrates the feasibility and effectiveness of the JPO-based tile in implementing Ising machines, opening new avenues for efficient and scalable combinatorial optimization in quantum computing.

Researchers produce thousands of scholarly documents containing valuable technical knowledge. The community faces the laborious task of reading these documents to identify, extract, and synthesize information. To automate information gathering, document-level question answering (QA) offers a flexible framework where human-posed questions can be adapted to extract diverse knowledge. Finetuning QA systems requires access to labeled data (tuples of context, question and answer). However, data curation for document QA is uniquely challenging because the context (i.e. answer evidence passage) needs to be retrieved from potentially long, ill-formatted documents. Existing QA datasets sidestep this challenge by providing short, well-defined contexts that are unrealistic in real-world applications. We present a three-stage document QA approach: (1) text extraction from PDF; (2) evidence retrieval from extracted texts to form well-posed contexts; (3) QA to extract knowledge from contexts to return high-quality answers -- extractive, abstractive, or Boolean. Using QASPER for evaluation, our detect-retrieve-comprehend (DRC) system achieves a +7.19 improvement in Answer-F1 over existing baselines while delivering superior context selection. Our results demonstrate that DRC holds tremendous promise as a flexible framework for practical scientific document QA.

Cross-corpus speech emotion recognition (SER) poses a challenge due to feature distribution mismatch, potentially degrading the performance of established SER methods. In this paper, we tackle this challenge by proposing a novel transfer subspace learning method called acoustic knowledgeguided transfer linear regression (AKTLR). Unlike existing approaches, which often overlook domain-specific knowledge related to SER and simply treat cross-corpus SER as a generic transfer learning task, our AKTLR method is built upon a well-designed acoustic knowledge-guided dual sparsity constraint mechanism. This mechanism emphasizes the potential of minimalistic acoustic parameter feature sets to alleviate classifier overadaptation, which is empirically validated acoustic knowledge in SER, enabling superior generalization in cross-corpus SER tasks compared to using large feature sets. Through this mechanism, we extend a simple transfer linear regression model to AKTLR. This extension harnesses its full capability to seek emotiondiscriminative and corpus-invariant features from established acoustic parameter feature sets used for describing speech signals across two scales: contributive acoustic parameter groups and constituent elements within each contributive group. Our proposed method is evaluated through extensive cross-corpus SER experiments on three widely-used speech emotion corpora: EmoDB, eNTERFACE, and CASIA. The results confirm the effectiveness and superior performance of our method, outperforming recent state-of-the-art transfer subspace learning and deep transfer learning-based cross-corpus SER methods. Furthermore, our work provides experimental evidence supporting the feasibility and superiority of incorporating domain-specific knowledge into the transfer learning model to address cross-corpus SER tasks.

Deep neural networks (DNNs) that incorporated lifelong sequential modeling (LSM) have brought great success to recommendation systems in various social media platforms. While continuous improvements have been made in domain-specific LSM, limited work has been done in cross-domain LSM, which considers modeling of lifelong sequences of both target domain and source domain. In this paper, we propose Lifelong Cross Network (LCN) to incorporate cross-domain LSM to improve the click-through rate (CTR) prediction in the target domain. The proposed LCN contains a LifeLong Attention Pyramid (LAP) module that comprises of three levels of cascaded attentions to effectively extract interest representations with respect to the candidate item from lifelong sequences. We also propose Cross Representation Production (CRP) module to enforce additional supervision on the learning and alignment of cross-domain representations so that they can be better reused on learning of the CTR prediction in the target domain. We conducted extensive experiments on WeChat Channels industrial dataset as well as on benchmark dataset. Results have revealed that the proposed LCN outperforms existing work in terms of both prediction accuracy and online performance.

Causal representation learning has emerged as the center of action in causal machine learning research. In particular, multi-domain datasets present a natural opportunity for showcasing the advantages of causal representation learning over standard unsupervised representation learning. While recent works have taken crucial steps towards learning causal representations, they often lack applicability to multi-domain datasets due to over-simplifying assumptions about the data; e.g. each domain comes from a different single-node perfect intervention. In this work, we relax these assumptions and capitalize on the following observation: there often exists a subset of latents whose certain distributional properties (e.g., support, variance) remain stable across domains; this property holds when, for example, each domain comes from a multi-node imperfect intervention. Leveraging this observation, we show that autoencoders that incorporate such invariances can provably identify the stable set of latents from the rest across different settings.

Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e.g., law articles, charges, and terms of penalty) for single-defendant cases. To address this problem, we propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases. Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation. To tackle the first challenge, we formalize the multi-defendant judgment process as hierarchical reasoning chains and introduce a multi-defendant LJP method, named Hierarchical Reasoning Network (HRN), which follows the hierarchical reasoning chains to determine criminal relationships, sentencing circumstances, law articles, charges, and terms of penalty for each defendant. To tackle the second challenge, we collect a real-world multi-defendant LJP dataset, namely MultiLJP, to accelerate the relevant research in the future. Extensive experiments on MultiLJP verify the effectiveness of our proposed HRN.

It is well-known that training neural networks for image classification with empirical risk minimization (ERM) makes them vulnerable to relying on spurious attributes instead of causal ones for prediction. Previously, deep feature re-weighting (DFR) has proposed retraining the last layer of a pre-trained network on balanced data concerning spurious attributes, making it robust to spurious correlation. However, spurious attribute annotations are not always available. In order to provide group robustness without such annotations, we propose a new method, called loss-based feature re-weighting (LFR), in which we infer a grouping of the data by evaluating an ERM-pre-trained model on a small left-out split of the training data. Then, a balanced number of samples is chosen by selecting high-loss samples from misclassified data points and low-loss samples from correctly-classified ones. Finally, we retrain the last layer on the selected balanced groups to make the model robust to spurious correlation. For a complete assessment, we evaluate LFR on various versions of Waterbirds and CelebA datasets with different spurious correlations, which is a novel technique for observing the model's performance in a wide range of spuriosity rates. While LFR is extremely fast and straightforward, it outperforms the previous methods that do not assume group label availability, as well as the DFR with group annotations provided, in cases of high spurious correlation in the training data.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

北京阿比特科技有限公司