In this paper we analyse a finite volume scheme for a nonlocal version of the Shigesada-Kawazaki-Teramoto (SKT) cross-diffusion system. We prove the existence of solutions to the scheme, derive qualitative properties of the solutions and prove its convergence. The proofs rely on a discrete entropy-dissipation inequality, discrete compactness arguments, and on the novel adaptation of the so-called duality method at the discrete level. Finally, thanks to numerical experiments, we investigate the influence of the nonlocality in the system: on convergence properties of the scheme, as an approximation of the local system and on the development of diffusive instabilities.
By abstracting over well-known properties of De Bruijn's representation with nameless dummies, we design a new theory of syntax with variable binding and capture-avoiding substitution. We propose it as a simpler alternative to Fiore, Plotkin, and Turi's approach, with which we establish a strong formal link. We also show that our theory easily incorporates simple types and equations between terms.
In this paper we consider a superlinear one-dimensional elliptic boundary value problem that generalizes the one studied by Moore and Nehari in [43]. Specifically, we deal with piecewise-constant weight functions in front of the nonlinearity with an arbitrary number $\kappa\geq 1$ of vanishing regions. We study, from an analytic and numerical point of view, the number of positive solutions, depending on the value of a parameter $\lambda$ and on $\kappa$. Our main results are twofold. On the one hand, we study analytically the behavior of the solutions, as $\lambda\downarrow-\infty$, in the regions where the weight vanishes. Our result leads us to conjecture the existence of $2^{\kappa+1}-1$ solutions for sufficiently negative $\lambda$. On the other hand, we support such a conjecture with the results of numerical simulations which also shed light on the structure of the global bifurcation diagrams in $\lambda$ and the profiles of positive solutions. Finally, we give additional numerical results suggesting that the same high multiplicity result holds true for a much larger class of weights, also arbitrarily close to situations where there is uniqueness of positive solutions.
In this work, we present new constructions for topological subsystem codes using semi-regular Euclidean and hyperbolic tessellations. They give us new families of codes, and we also provide a new family of codes obtained through an already existing construction, due to Sarvepalli and Brown. We also prove new results that allow us to obtain the parameters of these new codes.
A linear sixth-order partial differential equation (PDE) of ``parabolic'' type describes the dynamics of thin liquid films beneath surfaces with elastic bending resistance when deflections from the equilibrium film height are small. On a finite domain, the associated sixth-order Sturm--Liouville eigenvalue value problem is self-adjoint for the boundary conditions corresponding to a thin film in a closed trough, and the eigenfunctions form a complete orthonormal set. Using these eigenfunctions, we derive the Green's function for the governing sixth-order PDE on a finite interval and compare it to the known infinite-line solution. Further, we propose a Galerkin spectral method based on the constructed sixth-order eigenfunctions and their derivative expansions. The system of ordinary differential equations for the time-dependent expansion coefficients is solved by standard numerical methods. The numerical approach is applied to versions of the governing PDE with a second-order derivative (in addition to the sixth-order one), which arises from gravity acting on the film. In the absence of gravity, we demonstrate the self-similar intermediate asymptotics of initially localized disturbances on the film surface, at least until the disturbances ``feel'' the finite boundaries, and show that the derived Green's function is the global attractor for such solutions. In the presence of gravity, we use the proposed spectral numerical method to demonstrate that self-similar behavior persists, albeit for shortened intervals of time, even for large values of the gravity-to-bending ratio.
In this short note we formulate a stabilizer formalism in the language of noncommutative graphs. The classes of noncommutative graphs we consider are obtained via unitary representations of compact groups, and suitably chosen operators on finite-dimensional Hilbert spaces. Furthermore, in this framework, we generalize previous results in this area for determining when such noncommutative graphs have anticliques.
The approach to analysing compositional data has been dominated by the use of logratio transformations, to ensure exact subcompositional coherence and, in some situations, exact isometry as well. A problem with this approach is that data zeros, found in most applications, have to be replaced to allow the logarithmic transformation. An alternative new approach, called the `chiPower' transformation, which allows data zeros, is to combine the standardization inherent in the chi-square distance in correspondence analysis, with the essential elements of the Box-Cox power transformation. The chiPower transformation is justified because it} defines between-sample distances that tend to logratio distances for strictly positive data as the power parameter tends to zero, and are then equivalent to transforming to logratios. For data with zeros, a value of the power can be identified that brings the chiPower transformation as close as possible to a logratio transformation, without having to substitute the zeros. Especially in the area of high-dimensional data, this alternative approach can present such a high level of coherence and isometry as to be a valid approach to the analysis of compositional data. Furthermore, in a supervised learning context, if the compositional variables serve as predictors of a response in a modelling framework, for example generalized linear models, then the power can be used as a tuning parameter in optimizing the accuracy of prediction through cross-validation. The chiPower-transformed variables have a straightforward interpretation, since they are each identified with single compositional parts, not ratios.
This paper introduces a novel evaluation framework for Large Language Models (LLMs) such as Llama-2 and Mistral, focusing on the adaptation of Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art language models, the study reveals significant insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges faced by current LLMs in generating diverse and high-quality text.
The categorical Gini covariance is a dependence measure between a numerical variable and a categorical variable. The Gini covariance measures dependence by quantifying the difference between the conditional and unconditional distributional functions. A value of zero for the categorical Gini covariance implies independence of the numerical variable and the categorical variable. We propose a non-parametric test for testing the independence between a numerical and categorical variable using the categorical Gini covariance. We used the theory of U-statistics to find the test statistics and study the properties. The test has an asymptotic normal distribution. As the implementation of a normal-based test is difficult, we develop a jackknife empirical likelihood (JEL) ratio test for testing independence. Extensive Monte Carlo simulation studies are carried out to validate the performance of the proposed JEL-based test. We illustrate the test procedure using real a data set.
In this paper, we present a first-order Stress-Hybrid Virtual Element Method (SH-VEM) on six-noded triangular meshes for linear plane elasticity. We adopt the Hellinger--Reissner variational principle to construct a weak equilibrium condition and a stress based projection operator. On applying the divergence theorem to the weak strain-displacement relations, the stress projection operator is expressed in terms of the nodal displacements, which leads to a displacement-based formulation. This stress-hybrid approach assumes a globally continuous displacement field while the stress field is discontinuous across each element. The stress field is initially represented by divergence-free tensor polynomials based on Airy stress functions. However, for flexibility in choosing basis functions, we also present a formulation that uses a penalty term to enforce the element equilibrium conditions. This method is referred to as the Penalty Stress-Hybrid Virtual Element Method (PSH-VEM). Numerical results are presented for PSH-VEM and SH-VEM, and we compare their convergence to the composite triangle FEM and B-bar VEM on benchmark problems in linear elasticity. The SH-VEM converges optimally in the $L^2$ norm of the displacement, energy seminorm, and the $L^2$ norm of hydrostatic stress. Furthermore, the results reveal that PSH-VEM converges in most cases at a faster rate than the expected optimal rate, but it requires the selection of a suitably chosen penalty parameter.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.