亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We evaluate a battery of recent large language models on two benchmarks for word sense disambiguation in Swedish. At present, all current models are less accurate than the best supervised disambiguators in cases where a training set is available, but most models outperform graph-based unsupervised systems. Different prompting approaches are compared, with a focus on how to express the set of possible senses in a given context. The best accuracies are achieved when human-written definitions of the senses are included in the prompts.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 推斷 · 視覺問答 · 數據增強 · 自動問答 ·
2024 年 12 月 11 日

Visual programming prompts LLMs (large language mod-els) to generate executable code for visual tasks like visual question answering (VQA). Prompt-based methods are difficult to improve while also being unreliable and costly in both time and money. Our goal is to develop an efficient visual programming system without 1) using prompt-based LLMs at inference time and 2) a large set of program and answer annotations. We develop a synthetic data augmentation approach and alternative program generation method based on decoupling programs into higher-level skills called templates and the corresponding arguments. Our results show that with data augmentation, prompt-free smaller LLMs ($\approx$ 1B parameters) are competitive with state-of-the art models with the added benefit of much faster inference

Within numerical reasoning, understanding numbers themselves is still a challenge for existing language models. Simple generalisations, such as solving 100+200 instead of 1+2, can substantially affect model performance (Sivakumar and Moosavi, 2023). Among various techniques, character-level embeddings of numbers have emerged as a promising approach to improve number representation. However, this method has limitations as it leaves the task of aggregating digit representations to the model, which lacks direct supervision for this process. In this paper, we explore the use of mathematical priors to compute aggregated digit embeddings and explicitly incorporate these aggregates into transformer models. This can be achieved either by adding a special token to the input embeddings or by introducing an additional loss function to enhance correct predictions. We evaluate the effectiveness of incorporating this explicit aggregation, analysing its strengths and shortcomings, and discuss future directions to better benefit from this approach. Our methods, while simple, are compatible with any pretrained model, easy to implement, and have been made publicly available.

Every language recognized by a non-deterministic finite automaton can be recognized by a deterministic automaton, at the cost of a potential increase of the number of states, which in the worst case can go from $n$ states to $2^n$ states. In this article, we investigate this classical result in a probabilistic setting where we take a deterministic automaton with $n$ states uniformly at random and add just one random transition. These automata are almost deterministic in the sense that only one state has a non-deterministic choice when reading an input letter. In our model, each state has a fixed probability to be final. We prove that for any $d\geq 1$, with non-negligible probability the minimal (deterministic) automaton of the language recognized by such an automaton has more than $n^d$ states; as a byproduct, the expected size of its minimal automaton grows faster than any polynomial. Our result also holds when each state is final with some probability that depends on $n$, as long as it is not too close to $0$ and $1$, at distance at least $\Omega(\frac1{\sqrt{n}})$ to be precise, therefore allowing models with a sublinear number of final states in expectation.

Reward Models (RMs) are crucial for aligning language models with human preferences. Currently, the evaluation of RMs depends on measuring accuracy against a validation set of manually annotated preference data. Although this method is straightforward and widely adopted, the relationship between RM accuracy and downstream policy performance remains under-explored. In this work, we conduct experiments in a synthetic setting to investigate how differences in RM measured by accuracy translate into gaps in optimized policy performance. Our findings reveal that while there is a weak positive correlation between accuracy and downstream performance, policies optimized towards RMs with similar accuracy can exhibit quite different performance. Moreover, we discover that the way of measuring accuracy significantly impacts its ability to predict the final policy performance. Through the lens of the Regressional Goodhart effect, we recognize that accuracy, when used for measuring RM quality, can fail to fully capture the potential RM overoptimization. This underscores the inadequacy of relying solely on accuracy to reflect their impact on policy optimization.

The development of Large Language Models (LLMs) has created transformative opportunities for the financial industry, especially in the area of financial trading. However, how to integrate LLMs with trading systems has become a challenge. To address this problem, we propose an intelligent trade order recognition pipeline that enables the conversion of trade orders into a standard format in trade execution. The system improves the ability of human traders to interact with trading platforms while addressing the problem of misinformation acquisition in trade execution. In addition, we have created a trade order dataset of 500 pieces of data to simulate real-world trading scenarios. Moreover, we designed several metrics to provide a comprehensive assessment of dataset reliability and the generative power of big models in finance by experimenting with five state-of-the-art LLMs on our dataset. The results indicate that while LLMs demonstrate high generation rates (87.50% to 98.33%) and perfect follow-up rates, they face significant challenges in accuracy (5% to 10%) and completeness, with high missing rates (14.29% to 67.29%). In addition, LLMs tend to over-interrogate, suggesting that large models tend to collect more information, carrying certain challenges for information security.

Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

北京阿比特科技有限公司