This work uses visual knowledge discovery in parallel coordinates to advance methods of interpretable machine learning. The graphic data representation in parallel coordinates made the concepts of hypercubes and hyperblocks (HBs) simple to understand for end users. It is suggested to use mixed and pure hyperblocks in the proposed data classifier algorithm Hyper. It is shown that Hyper models generalize decision trees. The algorithm is presented in several settings and options to discover interactively or automatically overlapping or non-overlapping hyperblocks. Additionally, the use of hyperblocks in conjunction with language descriptions of visual patterns is demonstrated. The benchmark data from the UCI ML repository were used to evaluate the Hyper algorithm. It enabled the discovery of mixed and pure HBs evaluated using 10-fold cross validation. Connections among hyperblocks, dimension reduction and visualization have been established. The capability of end users to find and observe hyperblocks, as well as the ability of side-by-side visualizations to make patterns evident, are among major advantages ofhyperblock technology and the Hyper algorithm. A new method to visualize incomplete n-D data with missing values is proposed, while the traditional parallel coordinates do not support it. The ability of HBs to better prevent both overgeneralization and overfitting of data over decision trees is demonstrated as another benefit of the hyperblocks. The features of VisCanvas 2.0 software tool that implements Hyper technology are presented.
Imitation learning enables robots to learn and replicate human behavior from training data. Recent advances in machine learning enable end-to-end learning approaches that directly process high-dimensional observation data, such as images. However, these approaches face a critical challenge when processing data from multiple modalities, inadvertently ignoring data with a lower correlation to the desired output, especially when using short sampling periods. This paper presents a useful method to address this challenge, which amplifies the influence of data with a relatively low correlation to the output by inputting the data into each neural network layer. The proposed approach effectively incorporates diverse data sources into the learning process. Through experiments using a simple pick-and-place operation with raw images and joint information as input, significant improvements in success rates are demonstrated even when dealing with data from short sampling periods.
Automated auction design aims to find empirically high-revenue mechanisms through machine learning. Existing works on multi item auction scenarios can be roughly divided into RegretNet-like and affine maximizer auctions (AMAs) approaches. However, the former cannot strictly ensure dominant strategy incentive compatibility (DSIC), while the latter faces scalability issue due to the large number of allocation candidates. To address these limitations, we propose AMenuNet, a scalable neural network that constructs the AMA parameters (even including the allocation menu) from bidder and item representations. AMenuNet is always DSIC and individually rational (IR) due to the properties of AMAs, and it enhances scalability by generating candidate allocations through a neural network. Additionally, AMenuNet is permutation equivariant, and its number of parameters is independent of auction scale. We conduct extensive experiments to demonstrate that AMenuNet outperforms strong baselines in both contextual and non-contextual multi-item auctions, scales well to larger auctions, generalizes well to different settings, and identifies useful deterministic allocations. Overall, our proposed approach offers an effective solution to automated DSIC auction design, with improved scalability and strong revenue performance in various settings.
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In this paper, we conducted a comprehensive evaluation of Large Multimodal Models, such as GPT4V and Gemini, in various text-related visual tasks including Text Recognition, Scene Text-Centric Visual Question Answering (VQA), Document-Oriented VQA, Key Information Extraction (KIE), and Handwritten Mathematical Expression Recognition (HMER). To facilitate the assessment of Optical Character Recognition (OCR) capabilities in Large Multimodal Models, we propose OCRBench, a comprehensive evaluation benchmark.Our study encompasses 29 datasets, making it the most comprehensive OCR evaluation benchmark available. Furthermore, our study reveals both the strengths and weaknesses of these models, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expression recognition. Most importantly, the baseline results showcased in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal techniques. The evaluation pipeline and benchmark are available at //github.com/Yuliang-Liu/MultimodalOCR.
Hierarchical Federated Learning (HFL) is a distributed machine learning paradigm tailored for multi-tiered computation architectures, which supports massive access of devices' models simultaneously. To enable efficient HFL, it is crucial to design suitable incentive mechanisms to ensure that devices actively participate in local training. However, there are few studies on incentive mechanism design for HFL. In this paper, we design two-level incentive mechanisms for the HFL with a two-tiered computing structure to encourage the participation of entities in each tier in the HFL training. In the lower-level game, we propose a coalition formation game to joint optimize the edge association and bandwidth allocation problem, and obtain efficient coalition partitions by the proposed preference rule, which can be proven to be stable by exact potential game. In the upper-level game, we design the Stackelberg game algorithm, which not only determines the optimal number of edge aggregations for edge servers to maximize their utility, but also optimize the unit reward provided for the edge aggregation performance to ensure the interests of cloud servers. Furthermore, numerical results indicate that the proposed algorithms can achieve better performance than the benchmark schemes.
The utility of machine learning has rapidly expanded in the last two decades and presents an ethical challenge. Papernot et. al. developed a technique, known as Private Aggregation of Teacher Ensembles (PATE) to enable federated learning in which multiple teacher models are trained on disjoint datasets. This study is the first to apply PATE to an ensemble of quantum neural networks (QNN) to pave a new way of ensuring privacy in quantum machine learning (QML) models.
Revolutionizing the field of deep learning, Transformer-based models have achieved remarkable performance in many tasks. Recent research has recognized these models are robust to shuffling but are limited to inter-token permutation in the forward propagation. In this work, we propose our definition of permutation equivariance, a broader concept covering both inter- and intra- token permutation in the forward and backward propagation of neural networks. We rigorously proved that such permutation equivariance property can be satisfied on most vanilla Transformer-based models with almost no adaptation. We examine the property over a range of state-of-the-art models including ViT, Bert, GPT, and others, with experimental validations. Further, as a proof-of-concept, we explore how real-world applications including privacy-enhancing split learning, and model authorization, could exploit the permutation equivariance property, which implicates wider, intriguing application scenarios.
Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.