Emotion detection is a crucial component of Games User Research (GUR), as it allows game developers to gain insights into players' emotional experiences and tailor their games accordingly. However, detecting emotions in Virtual Reality (VR) games is challenging due to the Head-Mounted Display (HMD) that covers the top part of the player's face, namely, their eyes and eyebrows, which provide crucial information for recognizing the impression. To tackle this we used a Convolutional Neural Network (CNN) to train a model to predict emotions in full-face images where the eyes and eyebrows are covered. We used the FER2013 dataset, which we modified to cover eyes and eyebrows in images. The model in these images can accurately recognize seven different emotions which are anger, happiness, disgust, fear, impartiality, sadness and surprise. We assessed the model's performance by testing it on two VR games and using it to detect players' emotions. We collected self-reported emotion data from the players after the gameplay sessions. We analyzed the data collected from our experiment to understand which emotions players experience during the gameplay. We found that our approach has the potential to enhance gameplay analysis by enabling the detection of players' emotions in VR games, which can help game developers create more engaging and immersive game experiences.
3D Gaussian Splatting has emerged as an alternative 3D representation of Neural Radiance Fields (NeRFs), benefiting from its high-quality rendering results and real-time rendering speed. Considering the 3D Gaussian representation remains unparsed, it is necessary first to execute object segmentation within this domain. Subsequently, scene editing and collision detection can be performed, proving vital to a multitude of applications, such as virtual reality (VR), augmented reality (AR), game/movie production, etc. In this paper, we propose a novel approach to achieve object segmentation in 3D Gaussian via an interactive procedure without any training process and learned parameters. We refer to the proposed method as SA-GS, for Segment Anything in 3D Gaussians. Given a set of clicked points in a single input view, SA-GS can generalize SAM to achieve 3D consistent segmentation via the proposed multi-view mask generation and view-wise label assignment methods. We also propose a cross-view label-voting approach to assign labels from different views. In addition, in order to address the boundary roughness issue of segmented objects resulting from the non-negligible spatial sizes of 3D Gaussian located at the boundary, SA-GS incorporates the simple but effective Gaussian Decomposition scheme. Extensive experiments demonstrate that SA-GS achieves high-quality 3D segmentation results, which can also be easily applied for scene editing and collision detection tasks. Codes will be released soon.
This work considers the non-interactive source simulation problem (NISS). In the standard NISS scenario, a pair of distributed agents, Alice and Bob, observe a distributed binary memoryless source $(X^d,Y^d)$ generated based on joint distribution $P_{X,Y}$. The agents wish to produce a pair of discrete random variables $(U_d,V_d)$ with joint distribution $P_{U_d,V_d}$, such that $P_{U_d,V_d}$ converges in total variation distance to a target distribution $Q_{U,V}$. Two variations of the standard NISS scenario are considered. In the first variation, in addition to $(X^d,Y^d)$ the agents have access to a shared Bell state. The agents each measure their respective state, using a measurement of their choice, and use its classical output along with $(X^d,Y^d)$ to simulate the target distribution. This scenario is called the entanglement-assisted NISS (EA-NISS). In the second variation, the agents have access to a classical common random bit $Z$, in addition to $(X^d,Y^d)$. This scenario is called the classical common randomness NISS (CR-NISS). It is shown that for binary-output NISS scenarios, the set of feasible distributions for EA-NISS and CR-NISS are equal with each other. Hence, there is not quantum advantage in these EA-NISS scenarios. For non-binary output NISS scenarios, it is shown through an example that there are distributions that are feasible in EA-NISS but not in CR-NISS. This shows that there is a quantum advantage in non-binary output EA-NISS.
3D Gaussian Splatting has emerged as an alternative 3D representation of Neural Radiance Fields (NeRFs), benefiting from its high-quality rendering results and real-time rendering speed. Considering the 3D Gaussian representation remains unparsed, it is necessary first to execute object segmentation within this domain. Subsequently, scene editing and collision detection can be performed, proving vital to a multitude of applications, such as virtual reality (VR), augmented reality (AR), game/movie production, etc. In this paper, we propose a novel approach to achieve object segmentation in 3D Gaussian via an interactive procedure without any training process and learned parameters. We refer to the proposed method as SA-GS, for Segment Anything in 3D Gaussians. Given a set of clicked points in a single input view, SA-GS can generalize SAM to achieve 3D consistent segmentation via the proposed multi-view mask generation and view-wise label assignment methods. We also propose a cross-view label-voting approach to assign labels from different views. In addition, in order to address the boundary roughness issue of segmented objects resulting from the non-negligible spatial sizes of 3D Gaussian located at the boundary, SA-GS incorporates the simple but effective Gaussian Decomposition scheme. Extensive experiments demonstrate that SA-GS achieves high-quality 3D segmentation results, which can also be easily applied for scene editing and collision detection tasks. Codes will be released soon.
The increasing usage of Artificial Intelligence (AI) models, especially Deep Neural Networks (DNNs), is increasing the power consumption during training and inference, posing environmental concerns and driving the need for more energy-efficient algorithms and hardware solutions. This work addresses the growing energy consumption problem in Machine Learning (ML), particularly during the inference phase. Even a slight reduction in power usage can lead to significant energy savings, benefiting users, companies, and the environment. Our approach focuses on maximizing the accuracy of Artificial Neural Network (ANN) models using a neuroevolutionary framework whilst minimizing their power consumption. To do so, power consumption is considered in the fitness function. We introduce a new mutation strategy that stochastically reintroduces modules of layers, with power-efficient modules having a higher chance of being chosen. We introduce a novel technique that allows training two separate models in a single training step whilst promoting one of them to be more power efficient than the other while maintaining similar accuracy. The results demonstrate a reduction in power consumption of ANN models by up to 29.2% without a significant decrease in predictive performance.
We consider the redundancy of the exact channel synthesis problem under an i.i.d. assumption. Existing results provide an upper bound on the unnormalized redundancy that is logarithmic in the block length. We show, via an improved scheme, that the logarithmic term can be halved for most channels and eliminated for all others. For full-support discrete memoryless channels, we show that this is the best possible.
Interactive visual grounding in Human-Robot Interaction (HRI) is challenging yet practical due to the inevitable ambiguity in natural languages. It requires robots to disambiguate the user input by active information gathering. Previous approaches often rely on predefined templates to ask disambiguation questions, resulting in performance reduction in realistic interactive scenarios. In this paper, we propose TiO, an end-to-end system for interactive visual grounding in human-robot interaction. Benefiting from a unified formulation of visual dialogue and grounding, our method can be trained on a joint of extensive public data, and show superior generality to diversified and challenging open-world scenarios. In the experiments, we validate TiO on GuessWhat?! and InViG benchmarks, setting new state-of-the-art performance by a clear margin. Moreover, we conduct HRI experiments on the carefully selected 150 challenging scenes as well as real-robot platforms. Results show that our method demonstrates superior generality to diversified visual and language inputs with a high success rate. Codes and demos are available at //github.com/jxu124/TiO.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.