亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing traffic signal control systems rely on oversimplified rule-based methods, and even RL-based methods are often suboptimal and unstable. To address this, we propose a cooperative multi-objective architecture called Multi-Objective Multi-Agent Deep Deterministic Policy Gradient (MOMA-DDPG), which estimates multiple reward terms for traffic signal control optimization using age-decaying weights. Our approach involves two types of agents: one focuses on optimizing local traffic at each intersection, while the other aims to optimize global traffic throughput. We evaluate our method using real-world traffic data collected from an Asian country's traffic cameras. Despite the inclusion of a global agent, our solution remains decentralized as this agent is no longer necessary during the inference stage. Our results demonstrate the effectiveness of MOMA-DDPG, outperforming state-of-the-art methods across all performance metrics. Additionally, our proposed system minimizes both waiting time and carbon emissions. Notably, this paper is the first to link carbon emissions and global agents in traffic signal control.

相關內容

We present a novel form of Fourier analysis, and associated signal processing concepts, for signals (or data) indexed by edge-weighted directed acyclic graphs (DAGs). This means that our Fourier basis yields an eigendecomposition of a suitable notion of shift and convolution operators that we define. DAGs are the common model to capture causal relationships between data values and in this case our proposed Fourier analysis relates data with its causes under a linearity assumption that we define. The definition of the Fourier transform requires the transitive closure of the weighted DAG for which several forms are possible depending on the interpretation of the edge weights. Examples include level of influence, distance, or pollution distribution. Our framework is different from prior GSP: it is specific to DAGs and leverages, and extends, the classical theory of Moebius inversion from combinatorics. For a prototypical application we consider DAGs modeling dynamic networks in which edges change over time. Specifically, we model the spread of an infection on such a DAG obtained from real-world contact tracing data and learn the infection signal from samples assuming sparsity in the Fourier domain.

Irregularly sampled multivariate time series are ubiquitous in several application domains, leading to sparse, not fully-observed and non-aligned observations across different variables. Standard sequential neural network architectures, such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs), consider regular spacing between observation times, posing significant challenges to irregular time series modeling. While most of the proposed architectures incorporate RNN variants to handle irregular time intervals, convolutional neural networks have not been adequately studied in the irregular sampling setting. In this paper, we parameterize convolutional layers by employing time-explicitly initialized kernels. Such general functions of time enhance the learning process of continuous-time hidden dynamics and can be efficiently incorporated into convolutional kernel weights. We, thus, propose the time-parameterized convolutional neural network (TPCNN), which shares similar properties with vanilla convolutions but is carefully designed for irregularly sampled time series. We evaluate TPCNN on both interpolation and classification tasks involving real-world irregularly sampled multivariate time series datasets. Our experimental results indicate the competitive performance of the proposed TPCNN model which is also significantly more efficient than other state-of-the-art methods. At the same time, the proposed architecture allows the interpretability of the input series by leveraging the combination of learnable time functions that improve the network performance in subsequent tasks and expedite the inaugural application of convolutions in this field.

We present a unified and compact scene representation for robotics, where each object in the scene is depicted by a latent code capturing geometry and appearance. This representation can be decoded for various tasks such as novel view rendering, 3D reconstruction (e.g. recovering depth, point clouds, or voxel maps), collision checking, and stable grasp prediction. We build our representation from a single RGB input image at test time by leveraging recent advances in Neural Radiance Fields (NeRF) that learn category-level priors on large multiview datasets, then fine-tune on novel objects from one or few views. We expand the NeRF model for additional grasp outputs and explore ways to leverage this representation for robotics. At test-time, we build the representation from a single RGB input image observing the scene from only one viewpoint. We find that the recovered representation allows rendering from novel views, including of occluded object parts, and also for predicting successful stable grasps. Grasp poses can be directly decoded from our latent representation with an implicit grasp decoder. We experimented in both simulation and real world and demonstrated the capability for robust robotic grasping using such compact representation. Website: //nerfgrasp.github.io

While large text-to-image models are able to synthesize "novel" images, these images are necessarily a reflection of the training data. The problem of data attribution in such models -- which of the images in the training set are most responsible for the appearance of a given generated image -- is a difficult yet important one. As an initial step toward this problem, we evaluate attribution through "customization" methods, which tune an existing large-scale model toward a given exemplar object or style. Our key insight is that this allows us to efficiently create synthetic images that are computationally influenced by the exemplar by construction. With our new dataset of such exemplar-influenced images, we are able to evaluate various data attribution algorithms and different possible feature spaces. Furthermore, by training on our dataset, we can tune standard models, such as DINO, CLIP, and ViT, toward the attribution problem. Even though the procedure is tuned towards small exemplar sets, we show generalization to larger sets. Finally, by taking into account the inherent uncertainty of the problem, we can assign soft attribution scores over a set of training images.

Neural networks are vulnerable to adversarial attacks: adding well-crafted, imperceptible perturbations to their input can modify their output. Adversarial training is one of the most effective approaches to training robust models against such attacks. Unfortunately, this method is much slower than vanilla training of neural networks since it needs to construct adversarial examples for the entire training data at every iteration. By leveraging the theory of coreset selection, we show how selecting a small subset of training data provides a principled approach to reducing the time complexity of robust training. To this end, we first provide convergence guarantees for adversarial coreset selection. In particular, we show that the convergence bound is directly related to how well our coresets can approximate the gradient computed over the entire training data. Motivated by our theoretical analysis, we propose using this gradient approximation error as our adversarial coreset selection objective to reduce the training set size effectively. Once built, we run adversarial training over this subset of the training data. Unlike existing methods, our approach can be adapted to a wide variety of training objectives, including TRADES, $\ell_p$-PGD, and Perceptual Adversarial Training. We conduct extensive experiments to demonstrate that our approach speeds up adversarial training by 2-3 times while experiencing a slight degradation in the clean and robust accuracy.

Multi-node communication, which refers to the interaction among multiple devices, has attracted lots of attention in many Internet-of-Things (IoT) scenarios. However, its huge amounts of data flows and inflexibility for task extension have triggered the urgent requirement of communication-efficient distributed data transmission frameworks. In this paper, inspired by the great superiorities on bandwidth reduction and task adaptation of semantic communications, we propose a federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices. Federated learning enables the design of independent semantic communication link of each user while further improves the semantic extraction and task performance through global aggregation. Each link in FLSC is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator for coarse-to-fine semantic extraction and meaning translation according to specific tasks. In order to extend the FLSC into more realistic conditions, we design a channel state information-based multiple-input multiple-output transmission module to combat channel fading and noise. Simulation results show that the coarse semantic information can deal with a range of image-level tasks. Moreover, especially in low signal-to-noise ratio and channel bandwidth ratio regimes, FLSC evidently outperforms the traditional scheme, e.g. about 10 peak signal-to-noise ratio gain in the 3 dB channel condition.

Large pre-trained multimodal models have demonstrated significant success in a range of downstream tasks, including image captioning, image-text retrieval, visual question answering (VQA), etc. However, many of these methods rely on image-text pairs collected from the web as pre-training data and unfortunately overlook the need for fine-grained feature alignment between vision and language modalities, which requires detailed understanding of images and language expressions. While integrating VQA and dense captioning (DC) into pre-training can address this issue, acquiring image-question-answer as well as image-location-caption triplets is challenging and time-consuming. Additionally, publicly available datasets for VQA and dense captioning are typically limited in scale due to manual data collection and labeling efforts. In this paper, we propose a novel method called Joint QA and DC GEneration (JADE), which utilizes a pre-trained multimodal model and easily-crawled image-text pairs to automatically generate and filter large-scale VQA and dense captioning datasets. We apply this method to the Conceptual Caption (CC3M) dataset to generate a new dataset called CC3M-QA-DC. Experiments show that when used for pre-training in a multi-task manner, CC3M-QA-DC can improve the performance with various backbones on various downstream tasks. Furthermore, our generated CC3M-QA-DC can be combined with larger image-text datasets (e.g., CC15M) and achieve competitive results compared with models using much more data. Code and dataset are available at //github.com/johncaged/OPT_Questioner.

Visual-inertial localization is a key problem in computer vision and robotics applications such as virtual reality, self-driving cars, and aerial vehicles. The goal is to estimate an accurate pose of an object when either the environment or the dynamics are known. Absolute pose regression (APR) techniques directly regress the absolute pose from an image input in a known scene using convolutional and spatio-temporal networks. Odometry methods perform relative pose regression (RPR) that predicts the relative pose from a known object dynamic (visual or inertial inputs). The localization task can be improved by retrieving information from both data sources for a cross-modal setup, which is a challenging problem due to contradictory tasks. In this work, we conduct a benchmark to evaluate deep multimodal fusion based on pose graph optimization and attention networks. Auxiliary and Bayesian learning are utilized for the APR task. We show accuracy improvements for the APR-RPR task and for the RPR-RPR task for aerial vehicles and hand-held devices. We conduct experiments on the EuRoC MAV and PennCOSYVIO datasets and record and evaluate a novel industry dataset.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司