亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decentralized Finance (DeFi), a blockchain powered peer-to-peer financial system, is mushrooming. One and a half years ago the total value locked in DeFi systems was approximately $700$m USD, now, as of September 2021, it stands at around $100$bn USD. The frenetic evolution of the ecosystem has created challenges in understanding the basic principles of these systems and their security risks. In this Systematization of Knowledge (SoK) we delineate the DeFi ecosystem along the following axes: its primitives, its operational protocol types and its security. We provide a distinction between technical security, which has a healthy literature, and economic security, which is largely unexplored, connecting the latter with new models and thereby synthesizing insights from computer science, economics and finance. Finally, we outline the open research challenges in the ecosystem across these security types.

相關內容

迄今為止,產品(pin)設計師(shi)最友好的交互動畫軟件。

Blockchain technologies have been boosting the development of data-driven decentralized services in a wide range of fields. However, with the spirit of full transparency, many public blockchains expose all types of data to the public such as Ethereum. Besides, the on-chain persistence of large data is significantly expensive technically and economically. These issues lead to the difficulty of sharing fairly large private data while preserving attractive properties of public blockchains. Although direct encryption for on-chain data persistence can introduce confidentiality, new challenges such as key sharing, access control, and legal rights proving are still open. Meanwhile, cross-chain collaboration still requires secure and effective protocols, though decentralized storage systems such as IPFS bring the possibility for fairly large data persistence. In this paper, we propose Sunspot, a decentralized framework for privacy-preserving data sharing with access control on transparent public blockchains, to solve these issues. We also show the practicality and applicability of Sunspot by MyPub, a decentralized privacy-preserving publishing platform based on Sunspot. Furthermore, we evaluate the security, privacy, and performance of Sunspot through theoretical analysis and experiments.

The breakthrough of blockchain technology has facilitated the emergence and deployment of a wide range of Unmanned Aerial Vehicles (UAV) network-based applications. Yet, the full utilization of these applications is still limited due to the fact that each application is operating on an isolated blockchain. Thus, it is inevitable to orchestrate these blockchain fragments by introducing a cross-blockchain platform that governs the inter-communication and transfer of assets in the UAV networks context. In this paper, we provide an up-to-date survey of blockchain-based UAV networks applications. We also survey the literature on the state-of-the-art cross blockchain frameworks to highlight the latest advances in the field. Based on the outcomes of our survey, we introduce a spectrum of scenarios related to UAV networks that may leverage the potentials of the currently available cross-blockchain solutions. Finally, we identify open issues and potential challenges associated with the application of a cross-blockchain scheme for UAV networks that will hopefully guide future research directions.

Decentralized distributed learning is the key to enabling large-scale machine learning (training) on the edge devices utilizing private user-generated local data, without relying on the cloud. However, practical realization of such on-device training is limited by the communication bottleneck, computation complexity of training deep models and significant data distribution skew across devices. Many feedback-based compression techniques have been proposed in the literature to reduce the communication cost and a few works propose algorithmic changes to aid the performance in the presence of skewed data distribution by improving convergence rate. To the best of our knowledge, there is no work in the literature that applies and shows compute efficient training techniques such quantization, pruning etc., for peer-to-peer decentralized learning setups. In this paper, we analyze and show the convergence of low precision decentralized training that aims to reduce the computational complexity of training and inference. Further, We study the effect of degree of skew and communication compression on the low precision decentralized training over various computer vision and Natural Language Processing (NLP) tasks. Our experiments indicate that 8-bit decentralized training has minimal accuracy loss compared to its full precision counterpart even with heterogeneous data. However, when low precision training is accompanied by communication compression through sparsification we observe 1-2% drop in accuracy. The proposed low precision decentralized training decreases computational complexity, memory usage, and communication cost by ~4x while trading off less than a 1% accuracy for both IID and non-IID data. In particular, with higher skew values, we observe an increase in accuracy (by ~0.5%) with low precision training, indicating the regularization effect of the quantization.

Non-Fungible Tokens (NFTs) have emerged as a way to collect digital art as well as an investment vehicle. Despite having been popularized only recently, over the last year, NFT markets have witnessed several high-profile (and high-value) asset sales and a tremendous growth in trading volumes. However, these marketplaces have not yet received much scrutiny. Most academic researchers have analyzed decentralized finance (DeFi) protocols, studied attacks on those protocols, and developed automated techniques to detect smart contract vulnerabilities. To the best of our knowledge, we are the first to study the market dynamics and security issues of the multi-billion dollar NFT ecosystem. In this paper, we first present a systematic overview of how the NFT ecosystem works, and we identify three major actors: marketplaces, external entities, and users. We study the design of the underlying protocols of the top 8 marketplaces (ranked by transaction volume) and discover security, privacy, and usability issues. Many of these issues can lead to substantial financial losses. During our analysis, we reported 5 security bugs in 3 top marketplaces; all of them have been confirmed by the affected parties. Moreover, we provide insights on how the entities external to the blockchain are able to interfere with NFT markets, leading to serious consequences. We also collect a large amount of asset and event data pertaining to the NFTs being traded in the examined marketplaces, and we quantify malicious trading behaviors carried out by users under the cloak of anonymity. Finally, we studied the 15 most expensive NFT sales to date, and discovered discrepancies in at least half of these transactions.

Federated learning (FL) supports training models on geographically distributed devices. However, traditional FL systems adopt a centralized synchronous strategy, putting high communication pressure and model generalization challenge. Existing optimizations on FL either fail to speedup training on heterogeneous devices or suffer from poor communication efficiency. In this paper, we propose HADFL, a framework that supports decentralized asynchronous training on heterogeneous devices. The devices train model locally with heterogeneity-aware local steps using local data. In each aggregation cycle, they are selected based on probability to perform model synchronization and aggregation. Compared with the traditional FL system, HADFL can relieve the central server's communication pressure, efficiently utilize heterogeneous computing power, and can achieve a maximum speedup of 3.15x than decentralized-FedAvg and 4.68x than Pytorch distributed training scheme, respectively, with almost no loss of convergence accuracy.

The demand for large-scale deep learning is increasing, and distributed training is the current mainstream solution. Ring AllReduce is widely used as a data parallel decentralized algorithm. However, in a heterogeneous environment, each worker calculates the same amount of data, so that there is a lot of waiting time loss among different workers, which makes the algorithm unable to adapt well to heterogeneous clusters. Resources are not used as they should be. In this paper, we design an implementation of static allocation algorithm. The dataset is artificially allocated to each worker, and samples are drawn proportionally for training, thereby speeding up the training speed of the network in a heterogeneous environment. We verify the convergence and influence on training speed of the network model under this algorithm on one machine with multi-card and multi-machine with multi-card. On this basis of feasibility, we propose a self-adaptive allocation algorithm that allows each machine to find the data it needs to adapt to the current environment. The self-adaptive allocation algorithm can reduce the training time by nearly one-third to half compared to the same proportional allocation.In order to better show the applicability of the algorithm in heterogeneous clusters, We replace a poorly performing worker with a good performing worker or add a poorly performing worker to the heterogeneous cluster. Experimental results show that training time will decrease as the overall performance improves. Therefore, it means that resources are fully used. Further, this algorithm is not only suitable for straggler problems, but also for most heterogeneous situations. It can be used as a plug-in for AllReduce and its variant algorithms.

AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

北京阿比特科技有限公司