亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Audio-visual segmentation (AVS) is a challenging task that involves accurately segmenting sounding objects based on audio-visual cues. The effectiveness of audio-visual learning critically depends on achieving accurate cross-modal alignment between sound and visual objects. Successful audio-visual learning requires two essential components: 1) a challenging dataset with high-quality pixel-level multi-class annotated images associated with audio files, and 2) a model that can establish strong links between audio information and its corresponding visual object. However, these requirements are only partially addressed by current methods, with training sets containing biased audio-visual data, and models that generalise poorly beyond this biased training set. In this work, we propose a new cost-effective strategy to build challenging and relatively unbiased high-quality audio-visual segmentation benchmarks. We also propose a new informative sample mining method for audio-visual supervised contrastive learning to leverage discriminative contrastive samples to enforce cross-modal understanding. We show empirical results that demonstrate the effectiveness of our benchmark. Furthermore, experiments conducted on existing AVS datasets and on our new benchmark show that our method achieves state-of-the-art (SOTA) segmentation accuracy.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · 優化器 · Performer · ·
2024 年 6 月 3 日

We propose Diffusion Inference-Time T-Optimization (DITTO), a general-purpose frame-work for controlling pre-trained text-to-music diffusion models at inference-time via optimizing initial noise latents. Our method can be used to optimize through any differentiable feature matching loss to achieve a target (stylized) output and leverages gradient checkpointing for memory efficiency. We demonstrate a surprisingly wide-range of applications for music generation including inpainting, outpainting, and looping as well as intensity, melody, and musical structure control - all without ever fine-tuning the underlying model. When we compare our approach against related training, guidance, and optimization-based methods, we find DITTO achieves state-of-the-art performance on nearly all tasks, including outperforming comparable approaches on controllability, audio quality, and computational efficiency, thus opening the door for high-quality, flexible, training-free control of diffusion models. Sound examples can be found at //DITTO-Music.github.io/web/.

Recent advancements in generative modeling have significantly enhanced the reconstruction of audio waveforms from various representations. While diffusion models are adept at this task, they are hindered by latency issues due to their operation at the individual sample point level and the need for numerous sampling steps. In this study, we introduce RFWave, a cutting-edge multi-band Rectified Flow approach designed to reconstruct high-fidelity audio waveforms from Mel-spectrograms or discrete tokens. RFWave uniquely generates complex spectrograms and operates at the frame level, processing all subbands simultaneously to boost efficiency. Leveraging Rectified Flow, which targets a flat transport trajectory, RFWave achieves reconstruction with just 10 sampling steps. Our empirical evaluations show that RFWave not only provides outstanding reconstruction quality but also offers vastly superior computational efficiency, enabling audio generation at speeds up to 97 times faster than real-time on a GPU. An online demonstration is available at: //rfwave-demo.github.io/rfwave/.

Three-dimensional (3D) reconstruction from a single image is an ill-posed problem with inherent ambiguities, i.e. scale. Predicting a 3D scene from text description(s) is similarly ill-posed, i.e. spatial arrangements of objects described. We investigate the question of whether two inherently ambiguous modalities can be used in conjunction to produce metric-scaled reconstructions. To test this, we focus on monocular depth estimation, the problem of predicting a dense depth map from a single image, but with an additional text caption describing the scene. To this end, we begin by encoding the text caption as a mean and standard deviation; using a variational framework, we learn the distribution of the plausible metric reconstructions of 3D scenes corresponding to the text captions as a prior. To "select" a specific reconstruction or depth map, we encode the given image through a conditional sampler that samples from the latent space of the variational text encoder, which is then decoded to the output depth map. Our approach is trained alternatingly between the text and image branches: in one optimization step, we predict the mean and standard deviation from the text description and sample from a standard Gaussian, and in the other, we sample using a (image) conditional sampler. Once trained, we directly predict depth from the encoded text using the conditional sampler. We demonstrate our approach on indoor (NYUv2) and outdoor (KITTI) scenarios, where we show that language can consistently improve performance in both.

Video portrait segmentation (VPS), aiming at segmenting prominent foreground portraits from video frames, has received much attention in recent years. However, simplicity of existing VPS datasets leads to a limitation on extensive research of the task. In this work, we propose a new intricate large-scale Multi-scene Video Portrait Segmentation dataset MVPS consisting of 101 video clips in 7 scenario categories, in which 10,843 sampled frames are finely annotated at pixel level. The dataset has diverse scenes and complicated background environments, which is the most complex dataset in VPS to our best knowledge. Through the observation of a large number of videos with portraits during dataset construction, we find that due to the joint structure of human body, motion of portraits is part-associated, which leads that different parts are relatively independent in motion. That is, motion of different parts of the portraits is imbalanced. Towards this imbalance, an intuitive and reasonable idea is that different motion states in portraits can be better exploited by decoupling the portraits into parts. To achieve this, we propose a Part-Decoupling Network (PDNet) for video portrait segmentation. Specifically, an Inter-frame Part-Discriminated Attention (IPDA) module is proposed which unsupervisedly segments portrait into parts and utilizes different attentiveness on discriminative features specified to each different part. In this way, appropriate attention can be imposed to portrait parts with imbalanced motion to extract part-discriminated correlations, so that the portraits can be segmented more accurately. Experimental results demonstrate that our method achieves leading performance with the comparison to state-of-the-art methods.

Instruction-based image editing focuses on equipping a generative model with the capacity to adhere to human-written instructions for editing images. Current approaches typically comprehend explicit and specific instructions. However, they often exhibit a deficiency in executing active reasoning capacities required to comprehend instructions that are implicit or insufficiently defined. To enhance active reasoning capabilities and impart intelligence to the editing model, we introduce ReasonPix2Pix, a comprehensive reasoning-attentive instruction editing dataset. The dataset is characterized by 1) reasoning instruction, 2) more realistic images from fine-grained categories, and 3) increased variances between input and edited images. When fine-tuned with our dataset under supervised conditions, the model demonstrates superior performance in instructional editing tasks, independent of whether the tasks require reasoning or not. The code will be available at //github.com/Jin-Ying/ReasonPix2Pix.

We introduce VividDream, a method for generating explorable 4D scenes with ambient dynamics from a single input image or text prompt. VividDream first expands an input image into a static 3D point cloud through iterative inpainting and geometry merging. An ensemble of animated videos is then generated using video diffusion models with quality refinement techniques and conditioned on renderings of the static 3D scene from the sampled camera trajectories. We then optimize a canonical 4D scene representation using an animated video ensemble, with per-video motion embeddings and visibility masks to mitigate inconsistencies. The resulting 4D scene enables free-view exploration of a 3D scene with plausible ambient scene dynamics. Experiments demonstrate that VividDream can provide human viewers with compelling 4D experiences generated based on diverse real images and text prompts.

Spatio-temporal compression of videos, utilizing networks such as Variational Autoencoders (VAE), plays a crucial role in OpenAI's SORA and numerous other video generative models. For instance, many LLM-like video models learn the distribution of discrete tokens derived from 3D VAEs within the VQVAE framework, while most diffusion-based video models capture the distribution of continuous latent extracted by 2D VAEs without quantization. The temporal compression is simply realized by uniform frame sampling which results in unsmooth motion between consecutive frames. Currently, there lacks of a commonly used continuous video (3D) VAE for latent diffusion-based video models in the research community. Moreover, since current diffusion-based approaches are often implemented using pre-trained text-to-image (T2I) models, directly training a video VAE without considering the compatibility with existing T2I models will result in a latent space gap between them, which will take huge computational resources for training to bridge the gap even with the T2I models as initialization. To address this issue, we propose a method for training a video VAE of latent video models, namely CV-VAE, whose latent space is compatible with that of a given image VAE, e.g., image VAE of Stable Diffusion (SD). The compatibility is achieved by the proposed novel latent space regularization, which involves formulating a regularization loss using the image VAE. Benefiting from the latent space compatibility, video models can be trained seamlessly from pre-trained T2I or video models in a truly spatio-temporally compressed latent space, rather than simply sampling video frames at equal intervals. With our CV-VAE, existing video models can generate four times more frames with minimal finetuning. Extensive experiments are conducted to demonstrate the effectiveness of the proposed video VAE.

The advent of Vision Language Models (VLMs) transformed image understanding from closed-set classifications to dynamic image-language interactions, enabling open-vocabulary segmentation. Despite this flexibility, VLMs often fall behind closed-set classifiers in accuracy due to their reliance on ambiguous image captions and lack of domain-specific knowledge. We, therefore, introduce a new task domain adaptation for open-vocabulary segmentation, enhancing VLMs with domain-specific priors while preserving their open-vocabulary nature. Existing adaptation methods, when applied to segmentation tasks, improve performance on training queries but can reduce VLM performance on zero-shot text inputs. To address this shortcoming, we propose an approach that combines parameter-efficient prompt tuning with a triplet-loss-based training strategy. This strategy is designed to enhance open-vocabulary generalization while adapting to the visual domain. Our results outperform other parameter-efficient adaptation strategies in open-vocabulary segment classification tasks across indoor and outdoor datasets. Notably, our approach is the only one that consistently surpasses the original VLM on zero-shot queries. Our adapted VLMs can be plug-and-play integrated into existing open-vocabulary segmentation pipelines, improving OV-Seg by +6.0% mIoU on ADE20K, and OpenMask3D by +4.1% AP on ScanNet++ Offices without any changes to the methods.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

北京阿比特科技有限公司