亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tackling climate change by reducing and eventually eliminating carbon emissions is a significant milestone on the path toward establishing an environmentally sustainable society. As we transition into the exascale era, marked by an increasing demand and scale of HPC resources, the HPC community must embrace the challenge of reducing carbon emissions from designing and operating modern HPC systems. In this position paper, we describe challenges and highlight different opportunities that can aid HPC sites in reducing the carbon footprint of modern HPC systems.

相關內容

Semi-supervised entity alignment (EA) is a practical and challenging task because of the lack of adequate labeled mappings as training data. Most works address this problem by generating pseudo mappings for unlabeled entities. However, they either suffer from the erroneous (noisy) pseudo mappings or largely ignore the uncertainty of pseudo mappings. In this paper, we propose a novel semi-supervised EA method, termed as MixTEA, which guides the model learning with an end-to-end mixture teaching of manually labeled mappings and probabilistic pseudo mappings. We firstly train a student model using few labeled mappings as standard. More importantly, in pseudo mapping learning, we propose a bi-directional voting (BDV) strategy that fuses the alignment decisions in different directions to estimate the uncertainty via the joint matching confidence score. Meanwhile, we also design a matching diversity-based rectification (MDR) module to adjust the pseudo mapping learning, thus reducing the negative influence of noisy mappings. Extensive results on benchmark datasets as well as further analyses demonstrate the superiority and the effectiveness of our proposed method.

Images degraded by geometric distortions pose a significant challenge to imaging and computer vision tasks such as object recognition. Deep learning-based imaging models usually fail to give accurate performance for geometrically distorted images. In this paper, we propose the deformation-invariant neural network (DINN), a framework to address the problem of imaging tasks for geometrically distorted images. The DINN outputs consistent latent features for images that are geometrically distorted but represent the same underlying object or scene. The idea of DINN is to incorporate a simple component, called the quasiconformal transformer network (QCTN), into other existing deep networks for imaging tasks. The QCTN is a deep neural network that outputs a quasiconformal map, which can be used to transform a geometrically distorted image into an improved version that is closer to the distribution of natural or good images. It first outputs a Beltrami coefficient, which measures the quasiconformality of the output deformation map. By controlling the Beltrami coefficient, the local geometric distortion under the quasiconformal mapping can be controlled. The QCTN is lightweight and simple, which can be readily integrated into other existing deep neural networks to enhance their performance. Leveraging our framework, we have developed an image classification network that achieves accurate classification of distorted images. Our proposed framework has been applied to restore geometrically distorted images by atmospheric turbulence and water turbulence. DINN outperforms existing GAN-based restoration methods under these scenarios, demonstrating the effectiveness of the proposed framework. Additionally, we apply our proposed framework to the 1-1 verification of human face images under atmospheric turbulence and achieve satisfactory performance, further demonstrating the efficacy of our approach.

Cumulative and quadratic voting are two distributional voting methods that are expressive, promoting fairness and inclusion, particularly in the realm of participatory budgeting. Despite these benefits, graphical voter interfaces for cumulative and quadratic voting are complex to implement and use effectively. As a result, such methods have not seen yet widespread adoption on digital voting platforms. This paper addresses the challenge by introducing an implementation and evaluation of cumulative and quadratic voting within a state-of-the-art voting platform: Stanford Participatory Budgeting. The findings of the study show that while voters prefer simple methods, the more expressive (and complex) cumulative voting becomes the preferred one compared to k-ranking voting that is simpler but less expressive. The implemented voting interface elements are found useful and support the observed voters' preferences for more expressive voting methods. *

This paper explores the connections between optimal transport and variational inference, with a focus on forward and reverse time stochastic differential equations and Girsanov transformations.We present a principled and systematic framework for sampling and generative modelling centred around divergences on path space. Our work culminates in the development of a novel score-based annealed flow technique (with connections to Jarzynski and Crooks identities from statistical physics) and a regularised iterative proportional fitting (IPF)-type objective, departing from the sequential nature of standard IPF. Through a series of generative modelling examples and a double-well-based rare event task, we showcase the potential of the proposed methods.

The network edge's role in Artificial Intelligence (AI) inference processing is rapidly expanding, driven by a plethora of applications seeking computational advantages. These applications strive for data-driven efficiency, leveraging robust AI capabilities and prioritizing real-time responsiveness. However, as demand grows, so does system complexity. The proliferation of AI inference accelerators showcases innovation but also underscores challenges, particularly the varied software and hardware configurations of these devices. This diversity, while advantageous for certain tasks, introduces hurdles in device integration and coordination. In this paper, our objectives are three-fold. Firstly, we outline the requirements and components of a framework that accommodates hardware diversity. Next, we assess the impact of device heterogeneity on AI inference performance, identifying strategies to optimize outcomes without compromising service quality. Lastly, we shed light on the prevailing challenges and opportunities in this domain, offering insights for both the research community and industry stakeholders.

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.

The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.

Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.

北京阿比特科技有限公司