亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cross-encoder models, which jointly encode and score a query-item pair, are prohibitively expensive for direct k-nearest neighbor (k-NN) search. Consequently, k-NN search typically employs a fast approximate retrieval (e.g. using BM25 or dual-encoder vectors), followed by reranking with a cross-encoder; however, the retrieval approximation often has detrimental recall regret. This problem is tackled by ANNCUR (Yadav et al., 2022), a recent work that employs a cross-encoder only, making search efficient using a relatively small number of anchor items, and a CUR matrix factorization. While ANNCUR's one-time selection of anchors tends to approximate the cross-encoder distances on average, doing so forfeits the capacity to accurately estimate distances to items near the query, leading to regret in the crucial end-task: recall of top-k items. In this paper, we propose ADACUR, a method that adaptively, iteratively, and efficiently minimizes the approximation error for the practically important top-k neighbors. It does so by iteratively performing k-NN search using the anchors available so far, then adding these retrieved nearest neighbors to the anchor set for the next round. Empirically, on multiple datasets, in comparison to previous traditional and state-of-the-art methods such as ANNCUR and dual-encoder-based retrieve-and-rerank, our proposed approach ADACUR consistently reduces recall error-by up to 70% on the important k = 1 setting-while using no more compute than its competitors.

相關內容

Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is usually hard to guarantee. To achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency, we propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes rather than applying 3D-GS for each individual frame. In 4D-GS, a novel explicit representation containing both 3D Gaussians and 4D neural voxels is proposed. A decomposed neural voxel encoding algorithm inspired by HexPlane is proposed to efficiently build Gaussian features from 4D neural voxels and then a lightweight MLP is applied to predict Gaussian deformations at novel timestamps. Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$\times$800 resolution on an RTX 3090 GPU while maintaining comparable or better quality than previous state-of-the-art methods. More demos and code are available at //guanjunwu.github.io/4dgs/.

Diffusion-based models, such as the Stable Diffusion model, have revolutionized text-to-image synthesis with their ability to produce high-quality, high-resolution images. These advancements have prompted significant progress in image generation and editing tasks. However, these models also raise concerns due to their tendency to memorize and potentially replicate exact training samples, posing privacy risks and enabling adversarial attacks. Duplication in training datasets is recognized as a major factor contributing to memorization, and various forms of memorization have been studied so far. This paper focuses on two distinct and underexplored types of duplication that lead to replication during inference in diffusion-based models, particularly in the Stable Diffusion model. We delve into these lesser-studied duplication phenomena and their implications through two case studies, aiming to contribute to the safer and more responsible use of generative models in various applications.

In text-to-speech (TTS) synthesis, diffusion models have achieved promising generation quality. However, because of the pre-defined data-to-noise diffusion process, their prior distribution is restricted to a noisy representation, which provides little information of the generation target. In this work, we present a novel TTS system, Bridge-TTS, making the first attempt to substitute the noisy Gaussian prior in established diffusion-based TTS methods with a clean and deterministic one, which provides strong structural information of the target. Specifically, we leverage the latent representation obtained from text input as our prior, and build a fully tractable Schrodinger bridge between it and the ground-truth mel-spectrogram, leading to a data-to-data process. Moreover, the tractability and flexibility of our formulation allow us to empirically study the design spaces such as noise schedules, as well as to develop stochastic and deterministic samplers. Experimental results on the LJ-Speech dataset illustrate the effectiveness of our method in terms of both synthesis quality and sampling efficiency, significantly outperforming our diffusion counterpart Grad-TTS in 50-step/1000-step synthesis and strong fast TTS models in few-step scenarios. Project page: //bridge-tts.github.io/

We study threshold testing, an elementary probing model with the goal to choose a large value out of $n$ i.i.d. random variables. An algorithm can test each variable $X_i$ once for some threshold $t_i$, and the test returns binary feedback whether $X_i \ge t_i$ or not. Thresholds can be chosen adaptively or non-adaptively by the algorithm. Given the results for the tests of each variable, we then select the variable with highest conditional expectation. We compare the expected value obtained by the testing algorithm with expected maximum of the variables. Threshold testing is a semi-online variant of the gambler's problem and prophet inequalities. Indeed, the optimal performance of non-adaptive algorithms for threshold testing is governed by the standard i.i.d. prophet inequality of approximately $0.745+o(1)$ as $n \to \infty$. We show how adaptive algorithms can significantly improve upon this ratio. Our adaptive testing strategy guarantees a competitive ratio of at least $0.869-o(1)$. Moreover, we show that there are distributions that admit only a constant ratio $c < 1$, even when $n \to \infty$. Finally, when each box can be tested multiple times (with $n$ tests in total), we design an algorithm that achieves a ratio of $1-o(1)$.

In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.

Gradient-based minimax optimal algorithms have greatly promoted the development of continuous optimization and machine learning. One seminal work due to Yurii Nesterov [Nes83a] established $\tilde{\mathcal{O}}(\sqrt{L/\mu})$ gradient complexity for minimizing an $L$-smooth $\mu$-strongly convex objective. However, an ideal algorithm would adapt to the explicit complexity of a particular objective function and incur faster rates for simpler problems, triggering our reconsideration of two defeats of existing optimization modeling and analysis. (i) The worst-case optimality is neither the instance optimality nor such one in reality. (ii) Traditional $L$-smoothness condition may not be the primary abstraction/characterization for modern practical problems. In this paper, we open up a new way to design and analyze gradient-based algorithms with direct applications in machine learning, including linear regression and beyond. We introduce two factors $(\alpha, \tau_{\alpha})$ to refine the description of the degenerated condition of the optimization problems based on the observation that the singular values of Hessian often drop sharply. We design adaptive algorithms that solve simpler problems without pre-known knowledge with reduced gradient or analogous oracle accesses. The algorithms also improve the state-of-art complexities for several problems in machine learning, thereby solving the open problem of how to design faster algorithms in light of the known complexity lower bounds. Specially, with the $\mathcal{O}(1)$-nuclear norm bounded, we achieve an optimal $\tilde{\mathcal{O}}(\mu^{-1/3})$ (v.s. $\tilde{\mathcal{O}}(\mu^{-1/2})$) gradient complexity for linear regression. We hope this work could invoke the rethinking for understanding the difficulty of modern problems in optimization.

This study performs BERT-based analysis, which is a representative contextualized language model, on corporate disclosure data to predict impending bankruptcies. Prior literature on bankruptcy prediction mainly focuses on developing more sophisticated prediction methodologies with financial variables. However, in our study, we focus on improving the quality of input dataset. Specifically, we employ BERT model to perform sentiment analysis on MD&A disclosures. We show that BERT outperforms dictionary-based predictions and Word2Vec-based predictions in terms of adjusted R-square in logistic regression, k-nearest neighbor (kNN-5), and linear kernel support vector machine (SVM). Further, instead of pre-training the BERT model from scratch, we apply self-learning with confidence-based filtering to corporate disclosure data (10-K). We achieve the accuracy rate of 91.56% and demonstrate that the domain adaptation procedure brings a significant improvement in prediction accuracy.

We present parallel proof-of-work with DAG-style voting, a novel proof-of-work cryptocurrency protocol that, compared to Bitcoin, provides better consistency guarantees, higher transaction throughput, lower transaction confirmation latency, and higher resilience against incentive attacks. The superior consistency guarantees follow from implementing parallel proof-of-work, a recent consensus scheme that enforces a configurable number of proof-of-work votes per block. Our work is inspired by another recent protocol, Tailstorm, which structures the individual votes as tree and mitigates incentive attacks by discounting the mining rewards proportionally to the depth of the tree. We propose to structure the votes as a directed acyclic graph (DAG) instead of a tree. This allows for a more targeted punishment of offending miners and, as we show through a reinforcement learning based attack search, makes the protocol even more resilient to incentive attacks. An interesting by-product of our analysis is that parallel proof-of-work without reward discounting is less resilient to incentive attacks than Bitcoin in some realistic network scenarios.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司