Many public policies and medical interventions involve dynamics in their treatment assignments, where treatments are sequentially assigned to the same individuals across multiple stages, and the effect of treatment at each stage is usually heterogeneous with respect to the history of prior treatments and associated characteristics. We study statistical learning of optimal dynamic treatment regimes (DTRs) that guide the optimal treatment assignment for each individual at each stage based on the individual's history. We propose a step-wise doubly-robust approach to learn the optimal DTR using observational data under the assumption of sequential ignorability. The approach solves the sequential treatment assignment problem through backward induction, where, at each step, we combine estimators of propensity scores and action-value functions (Q-functions) to construct augmented inverse probability weighting estimators of values of policies for each stage. The approach consistently estimates the optimal DTR if either a propensity score or Q-function for each stage is consistently estimated. Furthermore, the resulting DTR can achieve the optimal convergence rate $n^{-1/2}$ of regret under mild conditions on the convergence rate for estimators of the nuisance parameters.
Researchers have focused on understanding how individual's behavior is influenced by the behaviors of their peers in observational studies of social networks. Identifying and estimating causal peer influence, however, is challenging due to confounding by homophily, where people tend to connect with those who share similar characteristics with them. Moreover, since all the attributes driving homophily are generally not always observed and act as unobserved confounders, identifying and estimating causal peer influence becomes infeasible using standard causal identification assumptions. In this paper, we address this challenge by leveraging latent locations inferred from the network itself to disentangle homophily from causal peer influence, and we extend this approach to multiple networks by adopting a Bayesian hierarchical modeling framework. To accommodate the nonlinear dependency of peer influence on individual behavior, we employ a Bayesian nonparametric method, specifically Bayesian Additive Regression Trees (BART), and we propose a Bayesian framework that accounts for the uncertainty in inferring latent locations. We assess the operating characteristics of the estimator via extensive simulation study. Finally, we apply our method to estimate causal peer influence in advice-seeking networks of teachers in secondary schools, in order to assess whether the teachers' belief about mathematics education is influenced by the beliefs of their peers from whom they receive advice. Our results suggest that, overlooking latent homophily can lead to either underestimation or overestimation of causal peer influence, accompanied by considerable estimation uncertainty.
Promoting healthy lifestyle behaviors remains a major public health concern, particularly due to their crucial role in preventing chronic conditions such as cancer, heart disease, and type 2 diabetes. Mobile health applications present a promising avenue for low-cost, scalable health behavior change promotion. Researchers are increasingly exploring adaptive algorithms that personalize interventions to each person's unique context. However, in empirical studies, mobile health applications often suffer from small effect sizes and low adherence rates, particularly in comparison to human coaching. Tailoring advice to a person's unique goals, preferences, and life circumstances is a critical component of health coaching that has been underutilized in adaptive algorithms for mobile health interventions. To address this, we introduce a new Thompson sampling algorithm that can accommodate personalized reward functions (i.e., goals, preferences, and constraints), while also leveraging data sharing across individuals to more quickly be able to provide effective recommendations. We prove that our modification incurs only a constant penalty on cumulative regret while preserving the sample complexity benefits of data sharing. We present empirical results on synthetic and semi-synthetic physical activity simulators, where in the latter we conducted an online survey to solicit preference data relating to physical activity, which we use to construct realistic reward models that leverages historical data from another study. Our algorithm achieves substantial performance improvements compared to baselines that do not share data or do not optimize for individualized rewards.
In the expanding field of language model applications, medical knowledge representation remains a significant challenge due to the specialized nature of the domain. Large language models, such as GPT-4, obtain reasonable scores on medical question answering tasks, but smaller models are far behind. In this work, we introduce a method to improve the proficiency of a small language model in the medical domain by employing a two-fold approach. We first fine-tune the model on a corpus of medical textbooks. Then, we use GPT-4 to generate questions similar to the downstream task, prompted with textbook knowledge, and use them to fine-tune the model. Additionally, we introduce ECN-QA, a novel medical question answering dataset containing ``progressive questions'' composed of related sequential questions. We show the benefits of our training strategy on this dataset. The study's findings highlight the potential of small language models in the medical domain when appropriately fine-tuned. The code and weights are available at //github.com/raidium-med/MQG.
Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks that are both energy-efficient and biologically plausible. However, applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding (PE) strategy. Drawing inspiration from the central pattern generators (CPGs) in the human brain, which produce rhythmic patterned outputs without requiring rhythmic inputs, we propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG. Moreover, extensive experiments across various domains, including time-series forecasting, natural language processing, and image classification, show that SNNs with CPG-PE outperform their conventional counterparts. Additionally, we perform analysis experiments to elucidate the mechanism through which SNNs encode positional information and to explore the function of CPGs in the human brain. This investigation may offer valuable insights into the fundamental principles of neural computation.
We present a novel algorithm that efficiently computes near-optimal deterministic policies for constrained reinforcement learning (CRL) problems. Our approach combines three key ideas: (1) value-demand augmentation, (2) action-space approximate dynamic programming, and (3) time-space rounding. Under mild reward assumptions, our algorithm constitutes a fully polynomial-time approximation scheme (FPTAS) for a diverse class of cost criteria. This class requires that the cost of a policy can be computed recursively over both time and (state) space, which includes classical expectation, almost sure, and anytime constraints. Our work not only provides provably efficient algorithms to address real-world challenges in decision-making but also offers a unifying theory for the efficient computation of constrained deterministic policies.
Data uncertainties, such as sensor noise, occlusions or limitations in the acquisition method can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. In image segmentation, latent density models can be utilized to address this problem. The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound. In this work, we demonstrate that the PU-Net latent space is severely sparse and heavily under-utilized. To address this, we introduce mutual information maximization and entropy-regularized Sinkhorn Divergence in the latent space to promote homogeneity across all latent dimensions, effectively improving gradient-descent updates and latent space informativeness. Our results show that by applying this on public datasets of various clinical segmentation problems, our proposed methodology receives up to 11% performance gains compared against preceding latent variable models for probabilistic segmentation on the Hungarian-Matched Intersection over Union. The results indicate that encouraging a homogeneous latent space significantly improves latent density modeling for medical image segmentation.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.