Denoising diffusion models have become ubiquitous for generative modeling. The core idea is to transport the data distribution to a Gaussian by using a diffusion. Approximate samples from the data distribution are then obtained by estimating the time-reversal of this diffusion using score matching ideas. We follow here a similar strategy to sample from unnormalized probability densities and compute their normalizing constants. However, the time-reversed diffusion is here simulated by using an original iterative particle scheme relying on a novel score matching loss. Contrary to standard denoising diffusion models, the resulting Particle Denoising Diffusion Sampler (PDDS) provides asymptotically consistent estimates under mild assumptions. We demonstrate PDDS on multimodal and high dimensional sampling tasks.
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT). The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations. We demonstrate the improved accuracy of the methodology over conventional methods and discuss its potential as a versatile tool for predicting the statistical behavior of complex dynamical systems.
Investigating noise distribution beyond Gaussian in diffusion generative models is an open problem. The Gaussian case has seen success experimentally and theoretically, fitting a unified SDE framework for score-based and denoising formulations. Recent studies suggest heavy-tailed noise distributions can address mode collapse and manage datasets with class imbalance, heavy tails, or outliers. Yoon et al. (NeurIPS 2023) introduced the L\'evy-Ito model (LIM), extending the SDE framework to heavy-tailed SDEs with $\alpha$-stable noise. Despite its theoretical elegance and performance gains, LIM's complex mathematics may limit its accessibility and broader adoption. This study takes a simpler approach by extending the denoising diffusion probabilistic model (DDPM) with $\alpha$-stable noise, creating the denoising L\'evy probabilistic model (DLPM). Using elementary proof techniques, we show DLPM reduces to running vanilla DDPM with minimal changes, allowing the use of existing implementations with minimal changes. DLPM and LIM have different training algorithms and, unlike the Gaussian case, they admit different backward processes and sampling algorithms. Our experiments demonstrate that DLPM achieves better coverage of data distribution tail, improved generation of unbalanced datasets, and faster computation times with fewer backward steps.
We present a polynomial-time algorithm for online differentially private synthetic data generation. For a data stream within the hypercube $[0,1]^d$ and an infinite time horizon, we develop an online algorithm that generates a differentially private synthetic dataset at each time $t$. This algorithm achieves a near-optimal accuracy bound of $O(\log(t)t^{-1/d})$ for $d\geq 2$ and $O(\log^{4.5}(t)t^{-1})$ for $d=1$ in the 1-Wasserstein distance. This result extends the previous work on the continual release model for counting queries to Lipschitz queries. Compared to the offline case, where the entire dataset is available at once, our approach requires only an extra polylog factor in the accuracy bound.
Recent advancements in quantum computing have positioned it as a prospective solution for tackling intricate computational challenges, with supervised learning emerging as a promising domain for its application. Despite this potential, the field of quantum machine learning is still in its early stages, and there persists a level of skepticism regarding a possible near-term quantum advantage. This paper aims to provide a classical perspective on current quantum algorithms for supervised learning, effectively bridging traditional machine learning principles with advancements in quantum machine learning. Specifically, this study charts a research trajectory that diverges from the predominant focus of quantum machine learning literature, originating from the prerequisites of classical methodologies and elucidating the potential impact of quantum approaches. Through this exploration, our objective is to deepen the understanding of the convergence between classical and quantum methods, thereby laying the groundwork for future advancements in both domains and fostering the involvement of classical practitioners in the field of quantum machine learning.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.