亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study incentivized exploration for the multi-armed bandit (MAB) problem with non-stationary reward distributions, where players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on the reward. We consider two different non-stationary environments: abruptly-changing and continuously-changing, and propose respective incentivized exploration algorithms. We show that the proposed algorithms achieve sublinear regret and compensation over time, thus effectively incentivizing exploration despite the nonstationarity and the biased or drifted feedback.

相關內容

Quantum communication networks (QCNs) utilize quantum mechanics for secure information transmission, but the reliance on fragile and expensive photonic quantum resources renders QCN resource optimization challenging. Unlike prior QCN works that relied on blindly compressing direct quantum embeddings of classical data, this letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations to extracts and embed only the relevant information from classical data into minimal high-dimensional quantum states that are accurately communicated over quantum channels with quantum communication and semantic fidelity measures. Simulation results indicate that, compared to semantic-agnostic QCN schemes, the proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.

We define QSE, a symbolic execution framework for quantum programs by integrating symbolic variables into quantum states and the outcomes of quantum measurements. The soundness of QSE is established through a theorem that ensures the correctness of symbolic execution within operational semantics. We further introduce symbolic stabilizer states, which symbolize the phases of stabilizer generators, for the efficient analysis of quantum error correction (QEC) programs. Within the QSE framework, we can use symbolic expressions to characterize the possible discrete Pauli errors in QEC, providing a significant improvement over existing methods that rely on sampling with simulators. We implement QSE with the support of symbolic stabilizer states in a prototype tool named QuantumSE.jl. Our experiments on representative QEC codes, including quantum repetition codes, Kitaev's toric codes, and quantum Tanner codes, demonstrate the efficiency of QuantumSE.jl for debugging QEC programs with over 1000 qubits. In addition, by substituting concrete values in symbolic expressions of measurement results, QuantumSE.jl is also equipped with a sampling feature for stabilizer circuits. Despite a longer initialization time than the state-of-the-art stabilizer simulator, Google's Stim, QuantumSE.jl offers a quicker sampling rate in the experiments.

Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%

We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a $(1-\epsilon)$-approximate maximum matching for an arbitrarily small constant $\epsilon > 0$. Until recently, the fastest known algorithm for this problem required $\Theta(n)$ time per update where $n$ is the number of vertices. This bound was slightly improved to $n/(\log^* n)^{\Omega(1)}$ by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to $n/2^{\Omega(\sqrt{\log n})}$ by Liu [ArXiv'24]. Whether this can be improved to $n^{1-\Omega(1)}$ remains a major open problem. In this paper, we present a new algorithm that maintains a $(1-\epsilon)$-approximate maximum matching. The update-time of our algorithm is parametrized based on the density of a certain class of graphs that we call Ordered Ruzsa-Szemer\'edi (ORS) graphs, a generalization of the well-known Ruzsa-Szemer\'edi graphs. While determining the density of ORS (or RS) remains a hard problem in combinatorics, we prove that if the existing constructions of ORS graphs are optimal, then our algorithm runs in $n^{1/2+O(\epsilon)}$ time for any fixed $\epsilon > 0$ which would be significantly faster than existing near-linear in $n$ time algorithms.

We study the fair and truthful allocation of m divisible public items among n agents, each with distinct preferences for the items. To aggregate agents' preferences fairly, we follow the literature on the fair allocation of public goods and aim to find a core solution. For divisible items, a core solution always exists and can be calculated efficiently by maximizing the Nash welfare objective. However, such a solution is easily manipulated; agents might have incentives to misreport their preferences. To mitigate this, the current state-of-the-art finds an approximate core solution with high probability while ensuring approximate truthfulness. However, this approach has two main limitations. First, due to several approximations, the approximation error in the core could grow with n, resulting in a non-asymptotic core solution. This limitation is particularly significant as public-good allocation mechanisms are frequently applied in scenarios involving a large number of agents, such as the allocation of public tax funds for municipal projects. Second, implementing the current approach for practical applications proves to be a highly nontrivial task. To address these limitations, we introduce PPGA, a (differentially) Private Public-Good Allocation algorithm, and show that it attains asymptotic truthfulness and finds an asymptotic core solution with high probability. Additionally, to demonstrate the practical applicability of our algorithm, we implement PPGA and empirically study its properties using municipal participatory budgeting data.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司