We present Citadel, to our knowledge, the first side-channel-resistant enclave platform to run realistic secure programs on a speculative out-of-order multicore processor. First, we develop a new hardware mechanism to enable secure shared memory while defending against transient execution attacks. Then, we develop an efficient dynamic cache partitioning scheme, improving both enclaves' and unprotected processes' performance. We conduct an in-depth security analysis and a performance evaluation of our new mechanisms. Finally, we build the hardware and software infrastructure required to run our secure enclaves. Our multicore processor runs on an FPGA and boots untrusted Linux from which users can securely launch and interact with enclaves. We open-source our end-to-end hardware and software infrastructure, hoping to spark more research and bridge the gap between conceptual proposals and FPGA prototypes.
With the rapid evolution of the Internet of Things, many real-world applications utilize heterogeneously connected sensors to capture time-series information. Edge-based machine learning (ML) methodologies are often employed to analyze locally collected data. However, a fundamental issue across data-driven ML approaches is distribution shift. It occurs when a model is deployed on a data distribution different from what it was trained on, and can substantially degrade model performance. Additionally, increasingly sophisticated deep neural networks (DNNs) have been proposed to capture spatial and temporal dependencies in multi-sensor time series data, requiring intensive computational resources beyond the capacity of today's edge devices. While brain-inspired hyperdimensional computing (HDC) has been introduced as a lightweight solution for edge-based learning, existing HDCs are also vulnerable to the distribution shift challenge. In this paper, we propose DOMINO, a novel HDC learning framework addressing the distribution shift problem in noisy multi-sensor time-series data. DOMINO leverages efficient and parallel matrix operations on high-dimensional space to dynamically identify and filter out domain-variant dimensions. Our evaluation on a wide range of multi-sensor time series classification tasks shows that DOMINO achieves on average 2.04% higher accuracy than state-of-the-art (SOTA) DNN-based domain generalization techniques, and delivers 16.34x faster training and 2.89x faster inference. More importantly, DOMINO performs notably better when learning from partially labeled and highly imbalanced data, providing 10.93x higher robustness against hardware noises than SOTA DNNs.
Multimedia compression allows us to watch videos, see pictures and hear sounds within a limited bandwidth, which helps the flourish of the internet. During the past decades, multimedia compression has achieved great success using hand-craft features and systems. With the development of artificial intelligence and video compression, there emerges a lot of research work related to using the neural network on the video compression task to get rid of the complicated system. Not only producing the advanced algorithms, but researchers also spread the compression to different content, such as User Generated Content(UGC). With the rapid development of mobile devices, screen content videos become an important part of multimedia data. In contrast, we find community lacks a large-scale dataset for screen content video compression, which impedes the fast development of the corresponding learning-based algorithms. In order to fulfill this blank and accelerate the research of this special type of videos, we propose the Large-scale Screen Content Dataset(LSCD), which contains 714 source sequences. Meanwhile, we provide the analysis of the proposed dataset to show some features of screen content videos, which will help researchers have a better understanding of how to explore new algorithms. Besides collecting and post-processing the data to organize the dataset, we also provide a benchmark containing the performance of both traditional codec and learning-based methods.
The rapid expansion of foundation pre-trained models and their fine-tuned counterparts has significantly contributed to the advancement of machine learning. Leveraging pre-trained models to extract knowledge and expedite learning in real-world tasks, known as "Model Reuse", has become crucial in various applications. Previous research focuses on reusing models within a certain aspect, including reusing model weights, structures, and hypothesis spaces. This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend. ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference. This empowers deep learning practitioners to explore downstream tasks and identify the complementary advantages among different methods. ZhiJian is readily accessible at //github.com/zhangyikaii/lamda-zhijian facilitating seamless utilization of pre-trained models and streamlining the model reuse process for researchers and developers.
We introduce EgoSchema, a very long-form video question-answering dataset, and benchmark to evaluate long video understanding capabilities of modern vision and language systems. Derived from Ego4D, EgoSchema consists of over 5000 human curated multiple choice question answer pairs, spanning over 250 hours of real video data, covering a very broad range of natural human activity and behavior. For each question, EgoSchema requires the correct answer to be selected between five given options based on a three-minute-long video clip. While some prior works have proposed video datasets with long clip lengths, we posit that merely the length of the video clip does not truly capture the temporal difficulty of the video task that is being considered. To remedy this, we introduce temporal certificate sets, a general notion for capturing the intrinsic temporal understanding length associated with a broad range of video understanding tasks & datasets. Based on this metric, we find EgoSchema to have intrinsic temporal lengths over 5.7x longer than the second closest dataset and 10x to 100x longer than any other video understanding dataset. Further, our evaluation of several current state-of-the-art video and language models shows them to be severely lacking in long-term video understanding capabilities. Even models with several billions of parameters achieve QA accuracy less than 33% (random is 20%) on the EgoSchema multi-choice question answering task, while humans achieve about 76% accuracy. We posit that \name{}{}, with its long intrinsic temporal structures and diverse complexity, would serve as a valuable evaluation probe for developing effective long-term video understanding systems in the future. Data and Zero-shot model evaluation code are open-sourced for both public and commercial use under the Ego4D license at //egoschema.github.io
In this work, we leverage pre-trained Large Language Models (LLMs) to enhance time-series forecasting. Mirroring the growing interest in unifying models for Natural Language Processing and Computer Vision, we envision creating an analogous model for long-term time-series forecasting. Due to limited large-scale time-series data for building robust foundation models, our approach LLM4TS focuses on leveraging the strengths of pre-trained LLMs. By combining time-series patching with temporal encoding, we have enhanced the capability of LLMs to handle time-series data effectively. Inspired by the supervised fine-tuning in chatbot domains, we prioritize a two-stage fine-tuning process: first conducting supervised fine-tuning to orient the LLM towards time-series data, followed by task-specific downstream fine-tuning. Furthermore, to unlock the flexibility of pre-trained LLMs without extensive parameter adjustments, we adopt several Parameter-Efficient Fine-Tuning (PEFT) techniques. Drawing on these innovations, LLM4TS has yielded state-of-the-art results in long-term forecasting. Our model has also shown exceptional capabilities as both a robust representation learner and an effective few-shot learner, thanks to the knowledge transferred from the pre-trained LLM.
In the telecom domain, precise forecasting of time series patterns, such as cell key performance indicators (KPIs), plays a pivotal role in enhancing service quality and operational efficiency. State-of-the-art forecasting approaches prioritize forecasting accuracy at the expense of computational performance, rendering them less suitable for data-intensive applications encompassing systems with a multitude of time series variables. To address this issue, we introduce QBSD, a live forecasting approach tailored to optimize the trade-off between accuracy and computational complexity. We have evaluated the performance of QBSD against state-of-the-art forecasting approaches on publicly available datasets. We have also extended this investigation to our curated network KPI dataset, now publicly accessible, to showcase the effect of dynamic operating ranges that varies with time. The results demonstrate that the proposed method excels in runtime efficiency compared to the leading algorithms available while maintaining competitive forecast accuracy.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.