亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As Federated Learning (FL) grows in popularity, new decentralized frameworks are becoming widespread. These frameworks leverage the benefits of decentralized environments to enable fast and energy-efficient inter-device communication. However, this growing popularity also intensifies the need for robust security measures. While existing research has explored various aspects of FL security, the role of adversarial node placement in decentralized networks remains largely unexplored. This paper addresses this gap by analyzing the performance of decentralized FL for various adversarial placement strategies when adversaries can jointly coordinate their placement within a network. We establish two baseline strategies for placing adversarial node: random placement and network centrality-based placement. Building on this foundation, we propose a novel attack algorithm that prioritizes adversarial spread over adversarial centrality by maximizing the average network distance between adversaries. We show that the new attack algorithm significantly impacts key performance metrics such as testing accuracy, outperforming the baseline frameworks by between 9% and 66.5% for the considered setups. Our findings provide valuable insights into the vulnerabilities of decentralized FL systems, setting the stage for future research aimed at developing more secure and robust decentralized FL frameworks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Machine Learning has become a pervasive tool in climate science applications. However, current models fail to address nonstationarity induced by anthropogenic alterations in greenhouse emissions and do not routinely quantify the uncertainty of proposed projections. In this paper, we model the Atlantic Meridional Overturning Circulation (AMOC) which is of major importance to climate in Europe and the US East Coast by transporting warm water to these regions, and has the potential for abrupt collapse. We can generate arbitrarily extreme climate scenarios through arbitrary time scales which we then predict using neural networks. Our analysis shows that the AMOC is predictable using neural networks under a diverse set of climate scenarios. Further experiments reveal that MLPs and Deep Ensembles can learn the physics of the AMOC instead of imitating its progression through autocorrelation. With quantified uncertainty, an intriguing pattern of "spikes" before critical points of collapse in the AMOC casts doubt on previous analyses that predicted an AMOC collapse within this century. Our results show that Bayesian Neural Networks perform poorly compared to more dense architectures and care should be taken when applying neural networks to nonstationary scenarios such as climate projections. Further, our results highlight that big NN models might have difficulty in modeling global Earth System dynamics accurately and be successfully applied in nonstationary climate scenarios due to the physics being challenging for neural networks to capture.

Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, fundamentally reshaping the landscape of natural language processing (NLP) research. However, recent evaluation frameworks often rely on the output probabilities of LLMs for predictions, primarily due to computational constraints, diverging from real-world LLM usage scenarios. While widely employed, the efficacy of these probability-based evaluation strategies remains an open research question. This study aims to scrutinize the validity of such probability-based evaluation methods within the context of using LLMs for Multiple Choice Questions (MCQs), highlighting their inherent limitations. Our empirical investigation reveals that the prevalent probability-based evaluation method inadequately aligns with generation-based prediction. Furthermore, current evaluation frameworks typically assess LLMs through predictive tasks based on output probabilities rather than directly generating responses, owing to computational limitations. We illustrate that these probability-based approaches do not effectively correspond with generative predictions. The outcomes of our study can enhance the understanding of LLM evaluation methodologies and provide insights for future research in this domain.

Large language models (LLMs) such as ChatGPT have gained considerable interest across diverse research communities. Their notable ability for text completion and generation has inaugurated a novel paradigm for language-interfaced problem solving. However, the potential and efficacy of these models in bioinformatics remain incompletely explored. In this work, we study the performance LLMs on a wide spectrum of crucial bioinformatics tasks. These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems. Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks. In addition, we provide a thorough analysis of their limitations in the context of complicated bioinformatics tasks. In conclusion, we believe that this work can provide new perspectives and motivate future research in the field of LLMs applications, AI for Science and bioinformatics.

Many studies have demonstrated that large language models (LLMs) can produce harmful responses, exposing users to unexpected risks when LLMs are deployed. Previous studies have proposed comprehensive taxonomies of the risks posed by LLMs, as well as corresponding prompts that can be used to examine the safety mechanisms of LLMs. However, the focus has been almost exclusively on English, and little has been explored for other languages. Here we aim to bridge this gap. We first introduce a dataset for the safety evaluation of Chinese LLMs, and then extend it to two other scenarios that can be used to better identify false negative and false positive examples in terms of risky prompt rejections. We further present a set of fine-grained safety assessment criteria for each risk type, facilitating both manual annotation and automatic evaluation in terms of LLM response harmfulness. Our experiments on five LLMs show that region-specific risks are the prevalent type of risk, presenting the major issue with all Chinese LLMs we experimented with. Warning: this paper contains example data that may be offensive, harmful, or biased.

We analyze the performance of enhanced spread spectrum Aloha (E-SSA) in the framework of unsourced multiple access (UMAC). The asynchronous, unframed transmission of E-SSA is modified to enable a direct comparison with framed UMAC schemes, as well as with the Polyanskiy's achievability bound. The design of E-SSA is tailored to the peculiarities of the UMAC setting, resorting to short polar codes and the use of a timing channel to improve the energy efficiency of the protocol. We assess the impact of the preamble length and of the spreading factor on the system efficiency. The resulting scheme exhibits simplicity at the transmitter and linear complexity with respect to the number of active users at the receiver, approaching the UMAC achievability bound in close competition with the best known UMAC schemes.

Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.

Capture The Flag (CTF) challenges are puzzles related to computer security scenarios. With the advent of large language models (LLMs), more and more CTF participants are using LLMs to understand and solve the challenges. However, so far no work has evaluated the effectiveness of LLMs in solving CTF challenges with a fully automated workflow. We develop two CTF-solving workflows, human-in-the-loop (HITL) and fully-automated, to examine the LLMs' ability to solve a selected set of CTF challenges, prompted with information about the question. We collect human contestants' results on the same set of questions, and find that LLMs achieve higher success rate than an average human participant. This work provides a comprehensive evaluation of the capability of LLMs in solving real world CTF challenges, from real competition to fully automated workflow. Our results provide references for applying LLMs in cybersecurity education and pave the way for systematic evaluation of offensive cybersecurity capabilities in LLMs.

We introduce the AI Security Pyramid of Pain, a framework that adapts the cybersecurity Pyramid of Pain to categorize and prioritize AI-specific threats. This framework provides a structured approach to understanding and addressing various levels of AI threats. Starting at the base, the pyramid emphasizes Data Integrity, which is essential for the accuracy and reliability of datasets and AI models, including their weights and parameters. Ensuring data integrity is crucial, as it underpins the effectiveness of all AI-driven decisions and operations. The next level, AI System Performance, focuses on MLOps-driven metrics such as model drift, accuracy, and false positive rates. These metrics are crucial for detecting potential security breaches, allowing for early intervention and maintenance of AI system integrity. Advancing further, the pyramid addresses the threat posed by Adversarial Tools, identifying and neutralizing tools used by adversaries to target AI systems. This layer is key to staying ahead of evolving attack methodologies. At the Adversarial Input layer, the framework addresses the detection and mitigation of inputs designed to deceive or exploit AI models. This includes techniques like adversarial patterns and prompt injection attacks, which are increasingly used in sophisticated attacks on AI systems. Data Provenance is the next critical layer, ensuring the authenticity and lineage of data and models. This layer is pivotal in preventing the use of compromised or biased data in AI systems. At the apex is the tactics, techniques, and procedures (TTPs) layer, dealing with the most complex and challenging aspects of AI security. This involves a deep understanding and strategic approach to counter advanced AI-targeted attacks, requiring comprehensive knowledge and planning.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司