亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the transmission of spatially correlated analog information in a wireless sensor network (WSN) through fading single-input and multiple-output (SIMO) multiple access channels (MACs) with low-latency requirements. A lattice-based analog joint source-channel coding (JSCC) approach is considered where vectors of consecutive source symbols are encoded at each sensor using an n-dimensional lattice and then transmitted to a multiantenna central node. We derive a minimum mean square error (MMSE) decoder that accounts for both the multidimensional structure of the encoding lattices and the spatial correlation. In addition, a sphere decoder is considered to simplify the required searches over the multidimensional lattices. Different lattice-based mappings are approached and the impact of their size and density on performance and latency is analyzed. Results show that, while meeting low-latency constraints, lattice-based analog JSCC provides performance gains and higher reliability with respect to the state-of-the-art JSCC schemes.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Model extraction attacks (MEAs) enable an attacker to replicate the functionality of a victim deep neural network (DNN) model by only querying its API service remotely, posing a severe threat to the security and integrity of pay-per-query DNN-based services. Although the majority of current research on MEAs has primarily concentrated on neural classifiers, there is a growing prevalence of image-to-image translation (I2IT) tasks in our everyday activities. However, techniques developed for MEA of DNN classifiers cannot be directly transferred to the case of I2IT, rendering the vulnerability of I2IT models to MEA attacks often underestimated. This paper unveils the threat of MEA in I2IT tasks from a new perspective. Diverging from the traditional approach of bridging the distribution gap between attacker queries and victim training samples, we opt to mitigate the effect caused by the different distributions, known as the domain shift. This is achieved by introducing a new regularization term that penalizes high-frequency noise, and seeking a flatter minimum to avoid overfitting to the shifted distribution. Extensive experiments on different image translation tasks, including image super-resolution and style transfer, are performed on different backbone victim models, and the new design consistently outperforms the baseline by a large margin across all metrics. A few real-life I2IT APIs are also verified to be extremely vulnerable to our attack, emphasizing the need for enhanced defenses and potentially revised API publishing policies.

The concept of fluid antennas (FAs) has emerged as a promising solution to enhance the spectral efficiency of wireless networks, achieved by introducing additional degrees of freedom, including reconfigurability and flexibility. In this paper, we investigate the use of index-modulated (IM) transmissions within the framework of FA systems, where an FA position is activated during each transmission interval. This approach is motivated by the common characteristics exhibited by FAs and IM transmissions, which entails the use of a single radio-frequency chain. From this perspective, we derive a closed-form expression for the bit error rate of IM-FAs considering spatial correlation, and demonstrating superior performance compared to conventional IM systems. To enhance the performance of IM-FAs in correlated conditions, channel coding techniques are applied. We first analyze a set partition coding (SPC) scheme for IM-FAs to spatially separate the FA ports, and provide a tight performance bound over correlated channels. Furthermore, the spatial SPC scheme is extended to turbo-coded modulation where the performance is analyzed for low and high signal-to-noise ratios. Our results reveal that through the implementation of channel coding techniques designed for FAs and IM transmission, the performance of coded IM-FAs exhibits notable enhancements, particularly in high correlation scenarios.

Both dual-functional radar-communication (DFRC) and massive multiple-input multiple-output (MIMO) have been recognized as enabling technologies for 6G wireless networks. This paper considers the advanced waveform design for hardware-efficient massive MIMO DFRC systems. Specifically, the transmit waveform is imposed with the quantized constant-envelope (QCE) constraint, which facilitates the employment of low-resolution digital-to-analog converters (DACs) and power-efficient amplifiers. The waveform design problem is formulated as the minimization of the mean square error (MSE) between the designed and desired beampatterns subject to the constructive interference (CI)-based communication quality of service (QoS) constraints and the QCE constraint. To solve the formulated problem, we first utilize the penalty technique to transform the discrete problem into an equivalent continuous penalty model. Then, we propose an inexact augmented Lagrangian method (ALM) algorithm for solving the penalty model. In particular, the ALM subproblem at each iteration is solved by a custom-built block successive upper-bound minimization (BSUM) algorithm, which admits closed-form updates, making the proposed inexact ALM algorithm computationally efficient. Simulation results demonstrate the superiority of the proposed approach over existing state-of-the-art ones. In addition, extensive simulations are conducted to examine the impact of various system parameters on the trade-off between communication and radar performances.

In millimeter-wave (mmWave) integrated sensing and communication networks, users may be within the coverage of multiple access points (AP), which typically employ large-scale antenna arrays to mitigate obstacle occlusion and path loss. However, large-scale arrays generate pencil-shaped beams, which necessitate a higher number of training beams to cover the desired space. Furthermore, as the antenna aperture increases, users are more likely to be situated in the near-field region of the AP antenna array. This motivates our investigation into the near-field beam training problem to achieve effective positioning services. To address the high complexity and low identification accuracy of existing beam training techniques, we propose an efficient hashing multi-arm beam (HMB) training scheme for the near-field scenario. Specifically, we first construct a near-field single-beam training codebook for the uniform planar arrays. Then, the hash functions are chosen independently to construct the multi-arm beam training codebooks for each AP. All APs traverse the predefined multi-arm beam training codeword simultaneously and the multi-AP superimposed signals at the user are recorded. Finally, the soft decision and voting methods are applied to obtain the correctly aligned beams only based on the signal powers. In addition, we logically prove that the traversal complexity is at the logarithmic level. Simulation results show that our proposed near-field HMB training method can achieve 96.4% identification accuracy of the exhaustive beam training method and greatly reduce the training overhead. Furthermore, we verify its applicability under the far-field scenario as well.

The application of eigenvalue theory to dual quaternion Hermitian matrices holds significance in the realm of multi-agent formation control. In this paper, we study the Rayleigh quotient iteration (RQI) for solving the right eigenpairs of dual quaternion Hermitian matrices. Combined with dual representation, the RQI algorithm can effectively compute the extreme eigenvalue along with the associated eigenvector of the large dual quaternion Hermitian matrices. Furthermore, a convergence analysis of the Rayleigh quotient iteration is derived, demonstrating a local convergence rate of at least cubic, which is faster than the linear convergence rate of the power method. Numerical examples are provided to illustrate the high accuracy and low CPU time cost of the proposed Rayleigh quotient iteration compared with the power method for solving the dual quaternion Hermitian eigenvalue problem.

Silent Speech Interfaces (SSIs) offer a noninvasive alternative to brain-computer interfaces for soundless verbal communication. We introduce Multimodal Orofacial Neural Audio (MONA), a system that leverages cross-modal alignment through novel loss functions--cross-contrast (crossCon) and supervised temporal contrast (supTcon)--to train a multimodal model with a shared latent representation. This architecture enables the use of audio-only datasets like LibriSpeech to improve silent speech recognition. Additionally, our introduction of Large Language Model (LLM) Integrated Scoring Adjustment (LISA) significantly improves recognition accuracy. Together, MONA LISA reduces the state-of-the-art word error rate (WER) from 28.8% to 12.2% in the Gaddy (2020) benchmark dataset for silent speech on an open vocabulary. For vocal EMG recordings, our method improves the state-of-the-art from 23.3% to 3.7% WER. In the Brain-to-Text 2024 competition, LISA performs best, improving the top WER from 9.8% to 8.9%. To the best of our knowledge, this work represents the first instance where noninvasive silent speech recognition on an open vocabulary has cleared the threshold of 15% WER, demonstrating that SSIs can be a viable alternative to automatic speech recognition (ASR). Our work not only narrows the performance gap between silent and vocalized speech but also opens new possibilities in human-computer interaction, demonstrating the potential of cross-modal approaches in noisy and data-limited regimes.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司