We study the tensor robust principal component analysis (TRPCA) problem, a tensorial extension of matrix robust principal component analysis (RPCA), that aims to split the given tensor into an underlying low-rank component and a sparse outlier component. This work proposes a fast algorithm, called Robust Tensor CUR Decompositions (RTCUR), for large-scale non-convex TRPCA problems under the Tucker rank setting. RTCUR is developed within a framework of alternating projections that projects between the set of low-rank tensors and the set of sparse tensors. We utilize the recently developed tensor CUR decomposition to substantially reduce the computational complexity in each projection. In addition, we develop four variants of RTCUR for different application settings. We demonstrate the effectiveness and computational advantages of RTCUR against state-of-the-art methods on both synthetic and real-world datasets.
Nature evolves creatures with a high complexity of morphological and behavioral intelligence, meanwhile computational methods lag in approaching that diversity and efficacy. Co-optimization of artificial creatures' morphology and control in silico shows promise for applications in physical soft robotics and virtual character creation; such approaches, however, require developing new learning algorithms that can reason about function atop pure structure. In this paper, we present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks. DiffuseBot bridges the gap between virtually generated content and physical utility by (i) augmenting the diffusion process with a physical dynamical simulation which provides a certificate of performance, and (ii) introducing a co-design procedure that jointly optimizes physical design and control by leveraging information about physical sensitivities from differentiable simulation. We showcase a range of simulated and fabricated robots along with their capabilities. Check our website at //diffusebot.github.io/
From their inception, quaternions and their division algebra have proven to be advantageous in modelling rotation/orientation in three-dimensional spaces and have seen use from the initial formulation of electromagnetic filed theory through to forming the basis of quantum filed theory. Despite their impressive versatility in modelling real-world phenomena, adaptive information processing techniques specifically designed for quaternion-valued signals have only recently come to the attention of the machine learning, signal processing, and control communities. The most important development in this direction is introduction of the HR-calculus, which provides the required mathematical foundation for deriving adaptive information processing techniques directly in the quaternion domain. In this article, the foundations of the HR-calculus are revised and the required tools for deriving adaptive learning techniques suitable for dealing with quaternion-valued signals, such as the gradient operator, chain and product derivative rules, and Taylor series expansion are presented. This serves to establish the most important applications of adaptive information processing in the quaternion domain for both single-node and multi-node formulations. The article is supported by Supplementary Material, which will be referred to as SM.
Many problems in machine learning can be formulated as solving entropy-regularized optimal transport on the space of probability measures. The canonical approach involves the Sinkhorn iterates, renowned for their rich mathematical properties. Recently, the Sinkhorn algorithm has been recast within the mirror descent framework, thus benefiting from classical optimization theory insights. Here, we build upon this result by introducing a continuous-time analogue of the Sinkhorn algorithm. This perspective allows us to derive novel variants of Sinkhorn schemes that are robust to noise and bias. Moreover, our continuous-time dynamics not only generalize but also offer a unified perspective on several recently discovered dynamics in machine learning and mathematics, such as the "Wasserstein mirror flow" of (Deb et al. 2023) or the "mean-field Schr\"odinger equation" of (Claisse et al. 2023).
The lattice Boltzmann method (LBM) has emerged as a prominent technique for solving fluid dynamics problems due to its algorithmic potential for computational scalability. We introduce XLB framework, a Python-based differentiable LBM library which harnesses the capabilities of the JAX framework. The architecture of XLB is predicated upon ensuring accessibility, extensibility, and computational performance, enabling scaling effectively across CPU, multi-GPU, and distributed multi-GPU systems. The framework can be readily augmented with novel boundary conditions, collision models, or simulation capabilities. XLB offers the unique advantage of integration with JAX's extensive machine learning echosystem, and the ability to utilize automatic differentiation for tackling physics-based machine learning, optimization, and inverse problems. XLB has been successfully scaled to handle simulations with billions of cells, achieving giga-scale lattice updates per second. XLB is released under the permissive Apache-2.0 license and is available on GitHub at //github.com/Autodesk/XLB.
This study analyzes the nonasymptotic convergence behavior of the quasi-Monte Carlo (QMC) method with applications to linear elliptic partial differential equations (PDEs) with lognormal coefficients. Building upon the error analysis presented in (Owen, 2006), we derive a nonasymptotic convergence estimate depending on the specific integrands, the input dimensionality, and the finite number of samples used in the QMC quadrature. We discuss the effects of the variance and dimensionality of the input random variable. Then, we apply the QMC method with importance sampling (IS) to approximate deterministic, real-valued, bounded linear functionals that depend on the solution of a linear elliptic PDE with a lognormal diffusivity coefficient in bounded domains of $\mathbb{R}^d$, where the random coefficient is modeled as a stationary Gaussian random field parameterized by the trigonometric and wavelet-type basis. We propose two types of IS distributions, analyze their effects on the QMC convergence rate, and observe the improvements.
Matching a source to a target probability measure is often solved by instantiating a linear optimal transport (OT) problem, parameterized by a ground cost function that quantifies discrepancy between points. When these measures live in the same metric space, the ground cost often defaults to its distance. When instantiated across two different spaces, however, choosing that cost in the absence of aligned data is a conundrum. As a result, practitioners often resort to solving instead a quadratic Gromow-Wasserstein (GW) problem. We exploit in this work a parallel between GW and cost-regularized OT, the regularized minimization of a linear OT objective parameterized by a ground cost. We use this cost-regularized formulation to match measures across two different Euclidean spaces, where the cost is evaluated between transformed source points and target points. We show that several quadratic OT problems fall in this category, and consider enforcing structure in linear transform (e.g. sparsity), by introducing structure-inducing regularizers. We provide a proximal algorithm to extract such transforms from unaligned data, and demonstrate its applicability to single-cell spatial transcriptomics/multiomics matching tasks.
This paper presents a modification of the data-driven sensor-based fault detection and diagnosis (SFDD) algorithm for online robot monitoring. Our version of the algorithm uses a collection of generative models, in particular restricted Boltzmann machines, each of which represents the distribution of sliding window correlations between a pair of correlated measurements. We use such models in a residual generation scheme, where high residuals generate conflict sets that are then used in a subsequent diagnosis step. As a proof of concept, the framework is evaluated on a mobile logistics robot for the problem of recognising disconnected wheels, such that the evaluation demonstrates the feasibility of the framework (on the faulty data set, the models obtained 88.6% precision and 75.6% recall rates), but also shows that the monitoring results are influenced by the choice of distribution model and the model parameters as a whole.
We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form $h = g \circ p$ where $p : \mathbb{R}^d \rightarrow \mathbb{R}$ is a degree $k$ polynomial and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a degree $q$ polynomial. This function class generalizes the single-index model, which corresponds to $k=1$, and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree $k$ polynomials $p$, a three-layer neural network trained via layerwise gradient descent on the square loss learns the target $h$ up to vanishing test error in $\widetilde{\mathcal{O}}(d^k)$ samples and polynomial time. This is a strict improvement over kernel methods, which require $\widetilde \Theta(d^{kq})$ samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of $p$ being a quadratic. When $p$ is indeed a quadratic, we achieve the information-theoretically optimal sample complexity $\widetilde{\mathcal{O}}(d^2)$, which is an improvement over prior work~\citep{nichani2023provable} requiring a sample size of $\widetilde\Theta(d^4)$. Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature $p$ with $\widetilde{\mathcal{O}}(d^k)$ samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.