亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Routes represent an integral part of triggering emotions in drivers. Navigation systems allow users to choose a navigation strategy, such as the fastest or shortest route. However, they do not consider the driver's emotional well-being. We present HappyRouting, a novel navigation-based empathic car interface guiding drivers through real-world traffic while evoking positive emotions. We propose design considerations, derive a technical architecture, and implement a routing optimization framework. Our contribution is a machine learning-based generated emotion map layer, predicting emotions along routes based on static and dynamic contextual data. We evaluated HappyRouting in a real-world driving study (N=13), finding that happy routes increase subjectively perceived valence by 11% (p=.007). Although happy routes take 1.25 times longer on average, participants perceived the happy route as shorter, presenting an emotion-enhanced alternative to today's fastest routing mechanisms. We discuss how emotion-based routing can be integrated into navigation apps, promoting emotional well-being for mobility use.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Autonomous mobile robots (AMRs) equipped with high-quality cameras have revolutionized the field of inspections by providing efficient and cost-effective means of conducting surveys. The use of autonomous inspection is becoming more widespread in a variety of contexts, yet it is still challenging to acquire the best inspection information autonomously. In situations where objects may block a robot's view, it is necessary to use reasoning to determine the optimal points for collecting data. Although researchers have explored cloud-based applications to store inspection data, these applications may not operate optimally under network constraints, and parsing these datasets can be manually intensive. Instead, there is an emerging requirement for AMRs to autonomously capture the most informative views efficiently. To address this challenge, we present an autonomous Next-Best-View (NBV) framework that maximizes the inspection information while reducing the number of pictures needed during operations. The framework consists of a formalized evaluation metric using ray-tracing and Gaussian process interpolation to estimate information reward based on the current understanding of the partially-known environment. A derivative-free optimization (DFO) method is used to sample candidate views in the environment and identify the NBV point. The proposed approach's effectiveness is shown by comparing it with existing methods and further validated through simulations and experiments with various vehicles.

Cylinder pressure-based control is a key enabler for advanced pre-mixed combustion concepts. Besides guaranteeing robust and safe operation, it allows for cylinder pressure and heat release shaping. This requires fast control-oriented combustion models. Over the years, mean-value models have been proposed that can predict combustion measures (e.g., Gross Indicated Mean Effective Pressure, or the crank angle where 50% of the total heat is released) or models that predict the full in-cylinder pressure. However, these models are not able to capture cyclic variations. This is important in the control design for combustion concepts, like Reactivity Controlled Compression Ignition, that can suffer from large cyclic variations. In this study, the in-cylinder pressure and cyclic variation are modelled using a data-based approach. The model combines Principle Component Decomposition and Gaussian Process Regression. A detailed study is performed on the effects of the different hyperparameters and kernel choices. The approach is applicable to any combustion concept, but most valuable for advance combustion concepts with large cyclic variation. The potential of the proposed approach is demonstrated for an Reactivity Controlled Compression Ignition engine running on Diesel and E85. The prediction quality of the evaluated combustion measures has an overall accuracy of 13.5% and 65.5% in mean behaviour and standard deviation, respectively. The peak-pressure rise-rate is traditionally hard to predict, in the proposed model it has an accuracy of 22.7% and 96.4% in mean behaviour and standard deviation, respectively. This Principle Component Decomposition-based approach is an important step towards in-cylinder pressure shaping. The use of Gaussian Process Regression provides important information on cyclic variation and provides next-cycle controls information on safety and performance criteria.

Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory footprint targeting the microcontrollers common on small robots. Our approach is based on the alternating direction method of multipliers (ADMM) and leverages the structure of the MPC problem for efficiency. We demonstrate TinyMPC's effectiveness by benchmarking against the state-of-the-art solver OSQP, achieving nearly an order of magnitude speed increase, as well as through hardware experiments on a 27 gram quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle avoidance. TinyMPC is publicly available at //tinympc.org.

ChipNeMo aims to explore the applications of large language models (LLMs) for industrial chip design. Instead of directly deploying off-the-shelf commercial or open-source LLMs, we instead adopt the following domain adaptation techniques: domain-adaptive tokenization, domain-adaptive continued pretraining, model alignment with domain-specific instructions, and domain-adapted retrieval models. We evaluate these methods on three selected LLM applications for chip design: an engineering assistant chatbot, EDA script generation, and bug summarization and analysis. Our evaluations demonstrate that domain-adaptive pretraining of language models, can lead to superior performance in domain related downstream tasks compared to their base LLaMA2 counterparts, without degradations in generic capabilities. In particular, our largest model, ChipNeMo-70B, outperforms the highly capable GPT-4 on two of our use cases, namely engineering assistant chatbot and EDA scripts generation, while exhibiting competitive performance on bug summarization and analysis. These results underscore the potential of domain-specific customization for enhancing the effectiveness of large language models in specialized applications.

The increasing reliance of drivers on navigation applications has made transportation networks more susceptible to data-manipulation attacks by malicious actors. Adversaries may exploit vulnerabilities in the data collection or processing of navigation services to inject false information, and to thus interfere with the drivers' route selection. Such attacks can significantly increase traffic congestions, resulting in substantial waste of time and resources, and may even disrupt essential services that rely on road networks. To assess the threat posed by such attacks, we introduce a computational framework to find worst-case data-injection attacks against transportation networks. First, we devise an adversarial model with a threat actor who can manipulate drivers by increasing the travel times that they perceive on certain roads. Then, we employ hierarchical multi-agent reinforcement learning to find an approximate optimal adversarial strategy for data manipulation. We demonstrate the applicability of our approach through simulating attacks on the Sioux Falls, ND network topology.

Autonomous parallel-style on-ramp merging in human controlled traffic continues to be an existing issue for autonomous vehicle control. Existing non-learning based solutions for vehicle control rely on rules and optimization primarily. These methods have been seen to present significant challenges. Recent advancements in Deep Reinforcement Learning have shown promise and have received significant academic interest however the available learning based approaches show inadequate attention to other highway vehicles and often rely on inaccurate road traffic assumptions. In addition, the parallel-style case is rarely considered. A novel learning based model for acceleration and lane change decision making that explicitly considers the utility to both the ego vehicle and its surrounding vehicles which may be cooperative or uncooperative to produce behaviour that is socially acceptable is proposed. The novel reward function makes use of Social Value Orientation to weight the vehicle's level of social cooperation and is divided into ego vehicle and surrounding vehicle utility which are weighted according to the model's designated Social Value Orientation. A two-lane highway with an on-ramp divided into a taper-style and parallel-style section is considered. Simulation results indicated the importance of considering surrounding vehicles in reward function design and show that the proposed model matches or surpasses those in literature in terms of collisions while also introducing socially courteous behaviour avoiding near misses and anti-social behaviour through direct consideration of the effect of merging on surrounding vehicles.

Transformer architectures have facilitated the development of large-scale and general-purpose sequence models for prediction tasks in natural language processing and computer vision, e.g., GPT-3 and Swin Transformer. Although originally designed for prediction problems, it is natural to inquire about their suitability for sequential decision-making and reinforcement learning problems, which are typically beset by long-standing issues involving sample efficiency, credit assignment, and partial observability. In recent years, sequence models, especially the Transformer, have attracted increasing interest in the RL communities, spawning numerous approaches with notable effectiveness and generalizability. This survey presents a comprehensive overview of recent works aimed at solving sequential decision-making tasks with sequence models such as the Transformer, by discussing the connection between sequential decision-making and sequence modeling, and categorizing them based on the way they utilize the Transformer. Moreover, this paper puts forth various potential avenues for future research intending to improve the effectiveness of large sequence models for sequential decision-making, encompassing theoretical foundations, network architectures, algorithms, and efficient training systems. As this article has been accepted by the Frontiers of Computer Science, here is an early version, and the most up-to-date version can be found at //journal.hep.com.cn/fcs/EN/10.1007/s11704-023-2689-5

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

北京阿比特科技有限公司