亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper is devoted to condition numbers of the total least squares problem with linear equality constraint (TLSE). With novel limit techniques, closed formulae for normwise, mixed and componentwise condition numbers of the TLSE problem are derived. Computable expressions and upper bounds for these condition numbers are also given to avoid the costly Kronecker product-based operations. The results unify the ones for the TLS problem. For TLSE problems with equilibratory input data, numerical experiments illustrate that normwise condition number-based estimate is sharp to evaluate the forward error of the solution, while for sparse and badly scaled matrices, mixed and componentwise condition numbers-based estimates are much tighter.

相關內容

In this paper we study some theoretical and numerical issues of the Boussinesq/Full dispersion system. This is a a three-parameter system of pde's that models the propagation of internal waves along the interface of two-fluid layers with rigid lid condition for the upper layer, and under a Boussinesq regime for the upper layer and a full dispersion regime for the lower layer. We first discretize in space the periodic initial-value problem with a Fourier-Galerkin spectral method and prove error estimates for several ranges of values of the parameters. Solitary waves of the model systems are then studied numerically in several ways. The numerical generation is analyzed by approximating the ode system with periodic boundary conditions for the solitary-wave profiles with a Fourier spectral scheme, implemented in a collocation form, and solving iteratively the corresponding algebraic system in Fourier space with the Petviashvili method accelerated with the minimal polynomial extrapolation technique. Motivated by the numerical results, a new result of existence of solitary waves is proved. In the last part of the paper, the dynamics of these solitary waves is studied computationally, To this end, the semidiscrete systems obtained from the Fourier-Galerkin discretization in space are integrated numerically in time by a Runge-Kutta Composition method of order four. The fully discrete scheme is used to explore numerically the stability of solitary waves, their collisions, and the resolution of other initial conditions into solitary waves.

For training recurrent neural network models of nonlinear dynamical systems from an input/output training dataset based on rather arbitrary convex and twice-differentiable loss functions and regularization terms, we propose the use of sequential least squares for determining the optimal network parameters and hidden states. In addition, to handle non-smooth regularization terms such as L1, L0, and group-Lasso regularizers, as well as to impose possibly non-convex constraints such as integer and mixed-integer constraints, we combine sequential least squares with the alternating direction method of multipliers (ADMM). The performance of the resulting algorithm, that we call NAILS (Nonconvex ADMM Iterations and Least Squares), is tested in a nonlinear system identification benchmark.

Variance estimation is important for statistical inference. It becomes non-trivial when observations are masked by serial dependence structures and time-varying mean structures. Existing methods either ignore or sub-optimally handle these nuisance structures. This paper develops a general framework for the estimation of the long-run variance for time series with non-constant means. The building blocks are difference statistics. The proposed class of estimators is general enough to cover many existing estimators. Necessary and sufficient conditions for consistency are investigated. The first asymptotically optimal estimator is derived. Our proposed estimator is theoretically proven to be invariant to arbitrary mean structures, which may include trends and a possibly divergent number of discontinuities.

We propose a $k^{\rm th}$-order unfitted finite element method ($2\le k\le 4$) to solve the moving interface problem of the Oseen equations. Thorough error estimates for the discrete solutions are presented by considering errors from interface-tracking, time integration, and spatial discretization. In literatures on time-dependent Stokes interface problems, error estimates for the discrete pressure are usually sub-optimal, namely, $(k-1)^{\rm th}$-order, under the $L^2$-norm. We have obtained a $(k-1)^{\rm th}$-order error estimate for the discrete pressure under the $H^1$-norm. Numerical experiments for a severely deforming interface show that optimal convergence orders are obtained for $k = 3$ and $4$.

This paper deals with a special type of Lyapunov functions, namely the solution of Zubov's equation. Such a function can be used to characterize the domain of attraction for systems of ordinary differential equations. We derive and prove an integral form solution to Zubov's equation. For numerical computation, we develop two data-driven methods. One is based on the integration of an augmented system of differential equations; and the other one is based on deep learning. The former is effective for systems with a relatively low state space dimension and the latter is developed for high dimensional problems. The deep learning method is applied to a New England 10-generator power system model. We prove that a neural network approximation exists for the Lyapunov function of power systems such that the approximation error is a cubic polynomial of the number of generators. The error convergence rate as a function of n, the number of neurons, is proved.

Let $Q_{n}^{r}$ be the graph with vertex set $\{-1,1\}^{n}$ in which two vertices are joined if their Hamming distance is at most $r$. The edge-isoperimetric problem for $Q_{n}^{r}$ is that: For every $(n,r,M)$ such that $1\le r\le n$ and $1\le M\le2^{n}$, determine the minimum edge-boundary size of a subset of vertices of $Q_{n}^{r}$ with a given size $M$. In this paper, we apply two different approaches to prove bounds for this problem. The first approach is a linear programming approach and the second is a probabilistic approach. Our bound derived by the first approach generalizes the tight bound for $M=2^{n-1}$ derived by Kahn, Kalai, and Linial in 1989. Moreover, our bound is also tight for $M=2^{n-2}$ and $r\le\frac{n}{2}-1$. Our bounds derived by the second approach are expressed in terms of the \emph{noise stability}, and they are shown to be asymptotically tight as $n\to\infty$ when $r=2\lfloor\frac{\beta n}{2}\rfloor+1$ and $M=\lfloor\alpha2^{n}\rfloor$ for fixed $\alpha,\beta\in(0,1)$, and is tight up to a factor $2$ when $r=2\lfloor\frac{\beta n}{2}\rfloor$ and $M=\lfloor\alpha2^{n}\rfloor$. In fact, the edge-isoperimetric problem is equivalent to a ball-noise stability problem which is a variant of the traditional (i.i.d.-) noise stability problem. Our results can be interpreted as bounds for the ball-noise stability problem.

In this paper, we are interested to an inverse Cauchy problem governed by the Stokes equation, called the data completion problem. It consists in determining the unspecified fluid velocity, or one of its components over a part of its boundary, by introducing given measurements on its remaining part. As it's known, this problem is one of the highly ill-posed problems in the Hadamard's sense \cite{had}, it is then an interesting challenge to carry out a numerical procedure for approximating their solutions, mostly in the particular case of noisy data. To solve this problem, we propose here a regularizing approach based on a coupled complex boundary method, originally proposed in \cite{source}, for solving an inverse source problem. We show the existence of the regularization optimization problem and prove the convergence of the subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem. Then we suggest the numerical approximation of this problem using the adjoint gradient technic and the finite element method of $P1-bubble/P1$ type. Finally, we provide some numerical results showing the accuracy, effectiveness, and robustness of the proposed approach.

Motivated by many interesting real-world applications in logistics and online advertising, we consider an online allocation problem subject to lower and upper resource constraints, where the requests arrive sequentially, sampled i.i.d. from an unknown distribution, and we need to promptly make a decision given limited resources and lower bounds requirements. First, with knowledge of the measure of feasibility, i.e., $\alpha$, we propose a new algorithm that obtains $1-O(\frac{\epsilon}{\alpha-\epsilon})$ -competitive ratio for the offline problems that know the entire requests ahead of time. Inspired by the previous studies, this algorithm adopts an innovative technique to dynamically update a threshold price vector for making decisions. Moreover, an optimization method to estimate the optimal measure of feasibility is proposed with theoretical guarantee at the end of this paper. Based on this method, if we tolerate slight violation of the lower bounds constraints with parameter $\eta$, the proposed algorithm is naturally extended to the settings without strong feasible assumption, which cover the significantly unexplored infeasible scenarios.

This paper focuses on the regularization of backward time-fractional diffusion problem on unbounded domain. This problem is well-known to be ill-posed, whence the need of a regularization method in order to recover stable approximate solution. For the problem under consideration, we present a unified framework of regularization which covers some techniques such as Fourier regularization [19], mollification [12] and approximate-inverse [7]. We investigate a regularization technique with two major advantages: the simplicity of computation of the regularized solution and the avoid of truncation of high frequency components (so as to avoid undesirable oscillation on the resulting approximate-solution). Under classical Sobolev-smoothness conditions, we derive order-optimal error estimates between the approximate solution and the exact solution in the case where both the data and the model are only approximately known. In addition, an order-optimal a-posteriori parameter choice rule based on the Morozov principle is given. Finally, via some numerical experiments in two-dimensional space, we illustrate the efficiency of our regularization approach and we numerically confirm the theoretical convergence rates established in the paper.

Developing classification algorithms that are fair with respect to sensitive attributes of the data has become an important problem due to the growing deployment of classification algorithms in various social contexts. Several recent works have focused on fairness with respect to a specific metric, modeled the corresponding fair classification problem as a constrained optimization problem, and developed tailored algorithms to solve them. Despite this, there still remain important metrics for which we do not have fair classifiers and many of the aforementioned algorithms do not come with theoretical guarantees; perhaps because the resulting optimization problem is non-convex. The main contribution of this paper is a new meta-algorithm for classification that takes as input a large class of fairness constraints, with respect to multiple non-disjoint sensitive attributes, and which comes with provable guarantees. This is achieved by first developing a meta-algorithm for a large family of classification problems with convex constraints, and then showing that classification problems with general types of fairness constraints can be reduced to those in this family. We present empirical results that show that our algorithm can achieve near-perfect fairness with respect to various fairness metrics, and that the loss in accuracy due to the imposed fairness constraints is often small. Overall, this work unifies several prior works on fair classification, presents a practical algorithm with theoretical guarantees, and can handle fairness metrics that were previously not possible.

北京阿比特科技有限公司