亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Millimeter wave (mmWave) based speech recognition provides more possibility for audio-related applications, such as conference speech transcription and eavesdropping. However, considering the practicality in real scenarios, latency and recognizable vocabulary size are two critical factors that cannot be overlooked. In this paper, we propose Radio2Text, the first mmWave-based system for streaming automatic speech recognition (ASR) with a vocabulary size exceeding 13,000 words. Radio2Text is based on a tailored streaming Transformer that is capable of effectively learning representations of speech-related features, paving the way for streaming ASR with a large vocabulary. To alleviate the deficiency of streaming networks unable to access entire future inputs, we propose the Guidance Initialization that facilitates the transfer of feature knowledge related to the global context from the non-streaming Transformer to the tailored streaming Transformer through weight inheritance. Further, we propose a cross-modal structure based on knowledge distillation (KD), named cross-modal KD, to mitigate the negative effect of low quality mmWave signals on recognition performance. In the cross-modal KD, the audio streaming Transformer provides feature and response guidance that inherit fruitful and accurate speech information to supervise the training of the tailored radio streaming Transformer. The experimental results show that our Radio2Text can achieve a character error rate of 5.7% and a word error rate of 9.4% for the recognition of a vocabulary consisting of over 13,000 words.

相關內容

Despite efforts to align large language models (LLMs) with human values, widely-used LLMs such as GPT, Llama, Claude, and PaLM are susceptible to jailbreaking attacks, wherein an adversary fools a targeted LLM into generating objectionable content. To address this vulnerability, we propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on LLMs. Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs. SmoothLLM reduces the attack success rate on numerous popular LLMs to below one percentage point, avoids unnecessary conservatism, and admits provable guarantees on attack mitigation. Moreover, our defense uses exponentially fewer queries than existing attacks and is compatible with any LLM.

Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. For scientific shape discovery, we propose a 3D Neural Additive Model for Interpretable Shape Representation ($\texttt{NAISR}$) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. $\texttt{NAISR}$ is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. We evaluate $\texttt{NAISR}$ with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer on three datasets: 1) $\textit{Starman}$, a simulated 2D shape dataset; 2) the ADNI hippocampus 3D shape dataset; and 3) a pediatric airway 3D shape dataset. Our experiments demonstrate that $\textit{Starman}$ achieves excellent shape reconstruction performance while retaining interpretability. Our code is available at $\href{//github.com/uncbiag/NAISR}{//github.com/uncbiag/NAISR}$.

Model binarization can significantly compress model size, reduce energy consumption, and accelerate inference through efficient bit-wise operations. Although binarizing convolutional neural networks have been extensively studied, there is little work on exploring binarization of vision Transformers which underpin most recent breakthroughs in visual recognition. To this end, we propose to solve two fundamental challenges to push the horizon of Binary Vision Transformers (BiViT). First, the traditional binary method does not take the long-tailed distribution of softmax attention into consideration, bringing large binarization errors in the attention module. To solve this, we propose Softmax-aware Binarization, which dynamically adapts to the data distribution and reduces the error caused by binarization. Second, to better preserve the information of the pretrained model and restore accuracy, we propose a Cross-layer Binarization scheme that decouples the binarization of self-attention and multi-layer perceptrons (MLPs), and Parameterized Weight Scales which introduce learnable scaling factors for weight binarization. Overall, our method performs favorably against state-of-the-arts by 19.8% on the TinyImageNet dataset. On ImageNet, our BiViT achieves a competitive 75.6% Top-1 accuracy over Swin-S model. Additionally, on COCO object detection, our method achieves an mAP of 40.8 with a Swin-T backbone over Cascade Mask R-CNN framework.

This paper proposes a novel diffusion-based model, CompoDiff, for solving Composed Image Retrieval (CIR) with latent diffusion and presents a newly created dataset, named SynthTriplets18M, of 18 million reference images, conditions, and corresponding target image triplets to train the model. CompoDiff and SynthTriplets18M tackle the shortages of the previous CIR approaches, such as poor generalizability due to the small dataset scale and the limited types of conditions. CompoDiff not only achieves a new zero-shot state-of-the-art on four CIR benchmarks, including FashionIQ, CIRR, CIRCO, and GeneCIS, but also enables a more versatile and controllable CIR by accepting various conditions, such as negative text and image mask conditions, and the controllability to the importance between multiple queries or the trade-off between inference speed and the performance which are unavailable with existing CIR methods. The code and dataset are available at //github.com/navervision/CompoDiff

Geoscience foundation models represent a revolutionary approach in the field of Earth sciences by integrating massive cross-disciplinary data to simulate and understand the Earth systems dynamics. As a data-centric artificial intelligence (AI) paradigm, they uncover insights from petabytes of structured and unstructured data. Flexible task specification, diverse inputs and outputs and multi-modal knowledge representation enable comprehensive analysis infeasible with individual data sources. Critically, the scalability and generalizability of geoscience models allow for tackling diverse prediction, simulation, and decision challenges related to Earth systems interactions. Collaboration between domain experts and computer scientists leads to innovations in these invaluable tools for understanding the past, present, and future of our planet. However, challenges remain in validation and verification, scale, interpretability, knowledge representation, and social bias. Going forward, enhancing model integration, resolution, accuracy, and equity through cross-disciplinary teamwork is key. Despite current limitations, geoscience foundation models show promise for providing critical insights into pressing issues including climate change, natural hazards, and sustainability through their ability to probe scenarios and quantify uncertainties. Their continued evolution toward integrated, data-driven modeling holds paradigm-shifting potential for Earth science.

Context: Machine Learning (ML) is integrated into a growing number of systems for various applications. Because the performance of an ML model is highly dependent on the quality of the data it has been trained on, there is a growing interest in approaches to detect and repair data errors (i.e., data cleaning). Researchers are also exploring how ML can be used for data cleaning; hence creating a dual relationship between ML and data cleaning. To the best of our knowledge, there is no study that comprehensively reviews this relationship. Objective: This paper's objectives are twofold. First, it aims to summarize the latest approaches for data cleaning for ML and ML for data cleaning. Second, it provides future work recommendations. Method: We conduct a systematic literature review of the papers published between 2016 and 2022 inclusively. We identify different types of data cleaning activities with and for ML: feature cleaning, label cleaning, entity matching, outlier detection, imputation, and holistic data cleaning. Results: We summarize the content of 101 papers covering various data cleaning activities and provide 24 future work recommendations. Our review highlights many promising data cleaning techniques that can be further extended. Conclusion: We believe that our review of the literature will help the community develop better approaches to clean data.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

北京阿比特科技有限公司