In this work, we propose a self-improving artificial intelligence system to enhance the safety performance of reinforcement learning (RL)-based autonomous driving (AD) agents using black-box verification methods. RL algorithms have become popular in AD applications in recent years. However, the performance of existing RL algorithms heavily depends on the diversity of training scenarios. A lack of safety-critical scenarios during the training phase could result in poor generalization performance in real-world driving applications. We propose a novel framework in which the weaknesses of the training set are explored through black-box verification methods. After discovering AD failure scenarios, the RL agent's training is re-initiated via transfer learning to improve the performance of previously unsafe scenarios. Simulation results demonstrate that our approach efficiently discovers safety failures of action decisions in RL-based adaptive cruise control (ACC) applications and significantly reduces the number of vehicle collisions through iterative applications of our method. The source code is publicly available at //github.com/data-and-decision-lab/self-improving-RL.
Offline Reinforcement Learning (RL) methods leverage previous experiences to learn better policies than the behavior policy used for data collection. In contrast to behavior cloning, which assumes the data is collected from expert demonstrations, offline RL can work with non-expert data and multimodal behavior policies. However, offline RL algorithms face challenges in handling distribution shifts and effectively representing policies due to the lack of online interaction during training. Prior work on offline RL uses conditional diffusion models to represent multimodal behavior in the dataset. Nevertheless, these methods are not tailored toward alleviating the out-of-distribution state generalization. We introduce a novel method, named State Reconstruction for Diffusion Policies (SRDP), incorporating state reconstruction feature learning in the recent class of diffusion policies to address the out-of-distribution generalization problem. State reconstruction loss promotes more descriptive representation learning of states to alleviate the distribution shift incurred by the out-of-distribution (OOD) states. We design a novel 2D Multimodal Contextual Bandit environment to illustrate the OOD generalization of SRDP compared to prior algorithms. In addition, we assess the performance of our model on D4RL continuous control benchmarks, namely the navigation of an 8-DoF ant and forward locomotion of half-cheetah, hopper, and walker2d, achieving state-of-the-art results.
In this work, we study the problem of semantic communication and inference, in which a student agent (i.e. mobile device) queries a teacher agent (i.e. cloud sever) to generate higher-order data semantics living in a simplicial complex. Specifically, the teacher first maps its data into a k-order simplicial complex and learns its high-order correlations. For effective communication and inference, the teacher seeks minimally sufficient and invariant semantic structures prior to conveying information. These minimal simplicial structures are found via judiciously removing simplices selected by the Hodge Laplacians without compromising the inference query accuracy. Subsequently, the student locally runs its own set of queries based on a masked simplicial convolutional autoencoder (SCAE) leveraging both local and remote teacher's knowledge. Numerical results corroborate the effectiveness of the proposed approach in terms of improving inference query accuracy under different channel conditions and simplicial structures. Experiments on a coauthorship dataset show that removing simplices by ranking the Laplacian values yields a 85% reduction in payload size without sacrificing accuracy. Joint semantic communication and inference by masked SCAE improves query accuracy by 25% compared to local student based query and 15% compared to remote teacher based query. Finally, incorporating channel semantics is shown to effectively improve inference accuracy, notably at low SNR values.
In this paper, we propose a new method for the accurate estimation and tracking of formants in speech signals using time-varying quasi-closed-phase (TVQCP) analysis. Conventional formant tracking methods typically adopt a two-stage estimate-and-track strategy wherein an initial set of formant candidates are estimated using short-time analysis (e.g., 10--50 ms), followed by a tracking stage based on dynamic programming or a linear state-space model. One of the main disadvantages of these approaches is that the tracking stage, however good it may be, cannot improve upon the formant estimation accuracy of the first stage. The proposed TVQCP method provides a single-stage formant tracking that combines the estimation and tracking stages into one. TVQCP analysis combines three approaches to improve formant estimation and tracking: (1) it uses temporally weighted quasi-closed-phase analysis to derive closed-phase estimates of the vocal tract with reduced interference from the excitation source, (2) it increases the residual sparsity by using the $L_1$ optimization and (3) it uses time-varying linear prediction analysis over long time windows (e.g., 100--200 ms) to impose a continuity constraint on the vocal tract model and hence on the formant trajectories. Formant tracking experiments with a wide variety of synthetic and natural speech signals show that the proposed TVQCP method performs better than conventional and popular formant tracking tools, such as Wavesurfer and Praat (based on dynamic programming), the KARMA algorithm (based on Kalman filtering), and DeepFormants (based on deep neural networks trained in a supervised manner). Matlab scripts for the proposed method can be found at: //github.com/njaygowda/ftrack
Unsignalized intersections are typically considered as one of the most representative and challenging scenarios for self-driving vehicles. To tackle autonomous driving problems in such scenarios, this paper proposes a curriculum proximal policy optimization (CPPO) framework with stage-decaying clipping. By adjusting the clipping parameter during different stages of training through proximal policy optimization (PPO), the vehicle can first rapidly search for an approximate optimal policy or its neighborhood with a large parameter, and then converges to the optimal policy with a small one. Particularly, the stage-based curriculum learning technology is incorporated into the proposed framework to improve the generalization performance and further accelerate the training process. Moreover, the reward function is specially designed in view of different curriculum settings. A series of comparative experiments are conducted in intersection-crossing scenarios with bi-lane carriageways to verify the effectiveness of the proposed CPPO method. The results show that the proposed approach demonstrates better adaptiveness to different dynamic and complex environments, as well as faster training speed over baseline methods.
While measuring socioeconomic indicators is critical for local governments to make informed policy decisions, such measurements are often unavailable at fine-grained levels like municipality. This study employs deep learning-based predictions from satellite images to close the gap. We propose a method that assigns a socioeconomic score to each satellite image by capturing the distributional behavior observed in larger areas based on the ground truth. We train an ordinal regression scoring model and adjust the scores to follow the common power law within and across regions. Evaluation based on official statistics in South Korea shows that our method outperforms previous models in predicting population and employment size at both the municipality and grid levels. Our method also demonstrates robust performance in districts with uneven development, suggesting its potential use in developing countries where reliable, fine-grained data is scarce.
In a co-design environment changes need to be integrated quickly and in an automated manner. This paper considers the challenge of creating and optimizing a global logistics system for the construction of a passenger aircraft within a co-design approach with respect to key performance indicators (like cost, time or resilience). The product in question is an aircraft, comprised of multiple components, manufactured at multiple sites worldwide. The goal is to find an optimal way to build the aircraft taking into consideration the requirements for its industrial system. The main motivation for approaching this challenge is to develop the industrial system in tandem with the product and making it more resilient against unforeseen events, reducing the risks of bottlenecks in the supply chain. This risk reduction ensures continued efficiency and operational success. To address this challenging and complex task we have chosen Answer Set Programming (ASP) as the modeling language, formalizing the relevant requirements of the investigated industrial system. The approach presented in this paper covers three main aspects: the extraction of the relevant information from a knowledge graph, the translation into logic programs and the computation of existing configurations guided by optimization criteria. Finally we visualize the results for an effortless evaluation of these models. Internal results seem promising and yielded several new research questions for future improvements of the discussed use case.
The assessment of the well-being of the peripheral auditory nerve system in individuals experiencing hearing impairment is conducted through auditory brainstem response (ABR) testing. Audiologists assess and document the results of the ABR test. They interpret the findings and assign labels to them using reference-based markers like peak latency, waveform morphology, amplitude, and other relevant factors. Inaccurate assessment of ABR tests may lead to incorrect judgments regarding the integrity of the auditory nerve system; therefore, proper Hearing Loss (HL) diagnosis and analysis are essential. To identify and assess ABR automation while decreasing the possibility of human error, machine learning methods, notably deep learning, may be an appropriate option. To address these issues, this study proposed deep-learning models using the transfer-learning (TL) approach to extract features from ABR testing and diagnose HL using support vector machines (SVM). Pre-trained convolutional neural network (CNN) architectures like AlexNet, DenseNet, GoogleNet, InceptionResNetV2, InceptionV3, MobileNetV2, NASNetMobile, ResNet18, ResNet50, ResNet101, ShuffleNet, and SqueezeNet are used to extract features from the collected ABR reported images dataset in the proposed model. It has been decided to use six measures accuracy, precision, recall, geometric mean (GM), standard deviation (SD), and area under the ROC curve to measure the effectiveness of the proposed model. According to experimental findings, the ShuffleNet and ResNet50 models' TL is effective for ABR to diagnose HL using an SVM classifier, with a high accuracy rate of 95% when using the 5-fold cross-validation method.
Offline reinforcement learning aims to utilize datasets of previously gathered environment-action interaction records to learn a policy without access to the real environment. Recent work has shown that offline reinforcement learning can be formulated as a sequence modeling problem and solved via supervised learning with approaches such as decision transformer. While these sequence-based methods achieve competitive results over return-to-go methods, especially on tasks that require longer episodes or with scarce rewards, importance sampling is not considered to correct the policy bias when dealing with off-policy data, mainly due to the absence of behavior policy and the use of deterministic evaluation policies. To this end, we propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation (DPE) in a unified framework with statistically proven properties on variance reduction. We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks. Our method brings a performance improvements on selected methods which outperforms SOTA baselines in several tasks, demonstrating the advantages of enabling double policy estimation for sequence-modeled reinforcement learning.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.