亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In their article "Coupling at a distance HDG and BEM", Cockburn, Sayas and Solano proposed an iterative coupling of the hybridizable discontinuous Galerkin method (HDG) and the boundary element method (BEM) to solve an exterior Dirichlet problem. The novelty of the numerical scheme consisted of using a computational domain for the HDG discretization whose boundary did not coincide with the coupling interface. In their article, the authors provided extensive numerical evidence for convergence, but the proof of convergence and the error analysis remained elusive at that time. In this article we fill the gap by proving the convergence of a relaxation of the algorithm and providing a priori error estimates for the numerical solution.

相關內容

Isogeometric analysis with the boundary element method (IGABEM) has recently gained interest. In this paper, the approximability of IGABEM on 3D acoustic scattering problems will be investigated and a new improved BeTSSi submarine will be presented as a benchmark example. Both Galerkin and collocation are considered in combination with several boundary integral equations (BIE). In addition to the conventional BIE, regularized versions of this BIE will be considered. Moreover, the hyper-singular BIE and the Burton--Miller formulation are also considered. A new adaptive integration routine is presented, and the numerical examples show the importance of the integration procedure in the boundary element method. The numerical examples also include comparison between standard BEM and IGABEM, which again verifies the higher accuracy obtained from the increased inter-element continuity of the spline basis functions. One of the main objectives in this paper is benchmarking acoustic scattering problems, and the method of manufactured solution will be used frequently in this regard.

The perfectly matched layer (PML) formulation is a prominent way of handling radiation problems in unbounded domain and has gained interest due to its simple implementation in finite element codes. However, its simplicity can be advanced further using the isogeometric framework. This work presents a spline based PML formulation which avoids additional coordinate transformation as the formulation is based on the same space in which the numerical solution is sought. The procedure can be automated for any convex artificial boundary. This removes restrictions on the domain construction using PML and can therefore reduce computational cost and improve mesh quality. The usage of spline basis functions with higher continuity also improves the accuracy of the numerical solution.

We introduce and analyze various Regularized Combined Field Integral Equations (CFIER) formulations of time-harmonic Navier equations in media with piece-wise constant material properties. These formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within which the well posedness of CIER formulations can be established. We also use the DtN approximations to derive and analyze Optimized Schwarz (OS) methods for the solution of elastodynamics transmission problems. The pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels of Navier boundary integral operators which is also the basis of high-order Nystr\"om quadratures for their discretizations. Based on these high-order discretizations we investigate the rate of convergence of iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We present a variety of numerical results that illustrate that the CFIER methodology leads to important computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of the ensuing discretized boundary integral equations. Finally, we show that the OS methods are competitive in the high-frequency high-contrast regime.

We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as the Subsampled Newton and Newton Sketch, which can efficiently construct stochastic Hessian estimates for many tasks. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme enjoys local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the iteration, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still enjoys a superlinear convergence~rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.

The scattering and transmission of harmonic acoustic waves at a penetrable material are commonly modelled by a set of Helmholtz equations. This system of partial differential equations can be rewritten into boundary integral equations defined at the surface of the objects and solved with the boundary element method (BEM). High frequencies or geometrical details require a fine surface mesh, which increases the number of degrees of freedom in the weak formulation. Then, matrix compression techniques need to be combined with iterative linear solvers to limit the computational footprint. Moreover, the convergence of the iterative linear solvers often depends on the frequency of the wave field and the objects' characteristic size. Here, the robust PMCHWT formulation is used to solve the acoustic transmission problem. An operator preconditioner based on on-surface radiation conditions (OSRC) is designed that yields frequency-robust convergence characteristics. Computational benchmarks compare the performance of this novel preconditioned formulation with other preconditioners and boundary integral formulations. The OSRC preconditioned PMCHWT formulation effectively simulates large-scale problems of engineering interest, such as focused ultrasound treatment of osteoid osteoma.

We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modelling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in space and time with inf-sup stable pairs of finite elements for the spatial approximation of the unknowns are investigated. Optimal order error estimates of energy-type are proven. Superconvergence at the time nodes is addressed briefly. The error analysis can be extended to discontinuous and enriched Galerkin space discretizations. The error estimates are confirmed by numerical experiments.

Motivated by problems from neuroimaging in which existing approaches make use of "mass univariate" analysis which neglects spatial structure entirely, but the full joint modelling of all quantities of interest is computationally infeasible, a novel method for incorporating spatial dependence within a (potentially large) family of model-selection problems is presented. Spatial dependence is encoded via a Markov random field model for which a variant of the pseudo-marginal Markov chain Monte Carlo algorithm is developed and extended by a further augmentation of the underlying state space. This approach allows the exploitation of existing unbiased marginal likelihood estimators used in settings in which spatial independence is normally assumed thereby facilitating the incorporation of spatial dependence using non-spatial estimates with minimal additional development effort. The proposed algorithm can be realistically used for analysis of %smaller subsets of large image moderately sized data sets such as $2$D slices of whole $3$D dynamic PET brain images or other regions of interest. Principled approximations of the proposed method, together with simple extensions based on the augmented spaces, are investigated and shown to provide similar results to the full pseudo-marginal method. Such approximations and extensions allow the improved performance obtained by incorporating spatial dependence to be obtained at negligible additional cost. An application to measured PET image data shows notable improvements in revealing underlying spatial structure when compared to current methods that assume spatial independence.

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.

The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.

北京阿比特科技有限公司