Both Morse theory and Lusternik-Schnirelmann theory link algebra, topology and analysis in a geometric setting. The two theories can be formulated in finite geometries like graph theory or within finite abstract simplicial complexes. We work here mostly in graph theory and review the Morse inequalities b(k)-b(k-1) + ... + b(0) less of equal than c(k)-c(k-1) + ... + c(0) for the Betti numbers b(k) and the minimal number c(k) of Morse critical points of index k and the Lusternik-Schnirelmann inequalities cup+1 less or equal than cat less or equal than cri, between the algebraic cup length cup, the topological category cat and the analytic number cri counting the minimal number of critical points of a function.
Complex reflection groups comprise a generalization of Weyl groups of semisimple Lie algebras, and even more generally of finite Coxeter groups. They have been heavily studied since their introduction and complete classification in the 1950s by Shephard and Todd, due to their many applications to combinatorics, representation theory, knot theory, and mathematical physics, to name a few examples. For each given complex reflection group G, we explain a new recipe for producing an integrable system of linear differential equations whose differential Galois group is precisely G. We exhibit these systems explicitly for many (low-rank) irreducible complex reflection groups in the Shephard-Todd classification.
Drawing from the theory of stochastic differential equations, we introduce a novel sampling method for known distributions and a new algorithm for diffusion generative models with unknown distributions. Our approach is inspired by the concept of the reverse diffusion process, widely adopted in diffusion generative models. Additionally, we derive the explicit convergence rate based on the smooth ODE flow. For diffusion generative models and sampling, we establish a dimension-free particle approximation convergence result. Numerical experiments demonstrate the effectiveness of our method. Notably, unlike the traditional Langevin method, our sampling method does not require any regularity assumptions about the density function of the target distribution. Furthermore, we also apply our method to optimization problems.
This paper proposes two algorithms to impose seepage boundary conditions in the context of Richards' equation for groundwater flows in unsaturated media. Seepage conditions are non-linear boundary conditions, that can be formulated as a set of unilateral constraints on both the pressure head and the water flux at the ground surface, together with a complementarity condition: these conditions in practice require switching between Neumann and Dirichlet boundary conditions on unknown portions on the boundary. Upon realizing the similarities of these conditions with unilateral contact problems in mechanics, we take inspiration from that literature to propose two approaches: the first method relies on a strongly consistent penalization term, whereas the second one is obtained by an hybridization approach, in which the value of the pressure on the surface is treated as a separate set of unknowns. The flow problem is discretized in mixed form with div-conforming elements so that the water mass is preserved. Numerical experiments show the validity of the proposed strategy in handling the seepage boundary conditions on geometries with increasing complexity.
A new decoder for the SIF test problems of the CUTEst collection is described, which produces problem files allowing the computation of values and derivatives of the objective function and constraints of most \cutest\ problems directly within ``native'' Matlab, Python or Julia, without any additional installation or interfacing with MEX files or Fortran programs. When used with Matlab, the new problem files optionally support reduced-precision computations.
Many well-known logical identities are naturally written as equivalences between contextual formulas. A simple example is the Boole-Shannon expansion $c[p] \equiv (p \wedge c[\mathrm{true}] ) \vee (\neg\, p \wedge c[\mathrm{false}] )$, where $c$ denotes an arbitrary formula with possibly multiple occurrences of a "hole", called a context, and $c[\varphi]$ denotes the result of "filling" all holes of $c$ with the formula $\varphi$. Another example is the unfolding rule $\mu X. c[X] \equiv c[\mu X. c[X]]$ of the modal $\mu$-calculus. We consider the modal $\mu$-calculus as overarching temporal logic and, as usual, reduce the problem whether $\varphi_1 \equiv \varphi_2$ holds for contextual formulas $\varphi_1, \varphi_2$ to the problem whether $\varphi_1 \leftrightarrow \varphi_2$ is valid . We show that the problem whether a contextual formula of the $\mu$-calculus is valid for all contexts can be reduced to validity of ordinary formulas. Our first result constructs a canonical context such that a formula is valid for all contexts if{}f it is valid for this particular one. However, the ordinary formula is exponential in the nesting-depth of the context variables. In a second result we solve this problem, thus proving that validity of contextual formulas is EXP-complete, as for ordinary equivalences. We also prove that both results hold for CTL and LTL as well. We conclude the paper with some experimental results. In particular, we use our implementation to automatically prove the correctness of a set of six contextual equivalences of LTL recently introduced by Esparza et al. for the normalization of LTL formulas. While Esparza et al. need several pages of manual proof, our tool only needs milliseconds to do the job and to compute counterexamples for incorrect variants of the equivalences.
We prove that random quantum circuits on any geometry, including a 1D line, can form approximate unitary designs over $n$ qubits in $\log n$ depth. In a similar manner, we construct pseudorandom unitaries (PRUs) in 1D circuits in $\text{poly} \log n $ depth, and in all-to-all-connected circuits in $\text{poly} \log \log n $ depth. In all three cases, the $n$ dependence is optimal and improves exponentially over known results. These shallow quantum circuits have low complexity and create only short-range entanglement, yet are indistinguishable from unitaries with exponential complexity. Our construction glues local random unitaries on $\log n$-sized or $\text{poly} \log n$-sized patches of qubits to form a global random unitary on all $n$ qubits. In the case of designs, the local unitaries are drawn from existing constructions of approximate unitary $k$-designs, and hence also inherit an optimal scaling in $k$. In the case of PRUs, the local unitaries are drawn from existing unitary ensembles conjectured to form PRUs. Applications of our results include proving that classical shadows with 1D log-depth Clifford circuits are as powerful as those with deep circuits, demonstrating superpolynomial quantum advantage in learning low-complexity physical systems, and establishing quantum hardness for recognizing phases of matter with topological order.
We study the iterative methods for large moment systems derived from the linearized Boltzmann equation. By Fourier analysis, it is shown that the direct application of the block symmetric Gauss-Seidel (BSGS) method has slower convergence for smaller Knudsen numbers. Better convergence rates for dense flows are then achieved by coupling the BSGS method with the micro-macro decomposition, which treats the moment equations as a coupled system with a microscopic part and a macroscopic part. Since the macroscopic part contains only a small number of equations, it can be solved accurately during the iteration with a relatively small computational cost, which accelerates the overall iteration. The method is further generalized to the multiscale decomposition which splits the moment system into many subsystems with different orders of magnitude. Both one- and two-dimensional numerical tests are carried out to examine the performances of these methods. Possible issues regarding the efficiency and convergence are discussed in the conclusion.
We formulate and analyze a multiscale method for an elliptic problem with an oscillatory coefficient based on a skeletal (hybrid) formulation. More precisely, we employ hybrid discontinuous Galerkin approaches and combine them with the localized orthogonal decomposition methodology to obtain a coarse-scale skeletal method that effectively includes fine-scale information. This work is the first step in reliably merging hybrid skeletal formulations and localized orthogonal decomposition to unite the advantages of both strategies. Numerical experiments are presented to illustrate the theoretical findings.
We consider a non-linear Bayesian data assimilation model for the periodic two-dimensional Navier-Stokes equations with initial condition modelled by a Gaussian process prior. We show that if the system is updated with sufficiently many discrete noisy measurements of the velocity field, then the posterior distribution eventually concentrates near the ground truth solution of the time evolution equation, and in particular that the initial condition is recovered consistently by the posterior mean vector field. We further show that the convergence rate can in general not be faster than inverse logarithmic in sample size, but describe specific conditions on the initial conditions when faster rates are possible. In the proofs we provide an explicit quantitative estimate for backward uniqueness of solutions of the two-dimensional Navier-Stokes equations.
The Lippmann--Schwinger--Lanczos (LSL) algorithm has recently been shown to provide an efficient tool for imaging and direct inversion of synthetic aperture radar data in multi-scattering environments [17], where the data set is limited to the monostatic, a.k.a. single input/single output (SISO) measurements. The approach is based on constructing data-driven estimates of internal fields via a reduced-order model (ROM) framework and then plugging them into the Lippmann-Schwinger integral equation. However, the approximations of the internal solutions may have more error due to missing the off diagonal elements of the multiple input/multiple output (MIMO) matrix valued transfer function. This, in turn, may result in multiple echoes in the image. Here we present a ROM-based data completion algorithm to mitigate this problem. First, we apply the LSL algorithm to the SISO data as in [17] to obtain approximate reconstructions as well as the estimate of internal field. Next, we use these estimates to calculate a forward Lippmann-Schwinger integral to populate the missing off-diagonal data (the lifting step). Finally, to update the reconstructions, we solve the Lippmann-Schwinger equation using the original SISO data, where the internal fields are constructed from the lifted MIMO data. The steps of obtaining the approximate reconstructions and internal fields and populating the missing MIMO data entries can be repeated for complex models to improve the images even further. Efficiency of the proposed approach is demonstrated on 2D and 2.5D numerical examples, where we see reconstructions are improved substantially.